Радиационная обстановка на железных дорогах россии. Реферат "аварии при перевозке радиоактивных веществ" Тушение радиоактивности на железной дороге глицерином

Радиационная опасность на железной дороге может возникнуть в результате ЧС, выпадения радиационных грузов в упаковках, полного или частичного разрушения защитного контейнера, нарушения целости охранной тары, срыва пломб, попадания радиоактивных веществ в воздух, воду, почву.

В подобных ситуациях спасатели должны:
- определить радиационную обстановку, установить границы радиационно опасной зоны и оградить ее предупредительными знаками, определить уровни загрязненности радиоактивными веществами транспортных средств, грузов, местности;
- выявить людей, подвергшихся радиоактивному облучению. Лиц, получивших дозу облучения свыше 25 бэр, направить на медицинское обследование, а лиц, подвергшихся радиоактивному загрязнению, - на санитарную обработку. Зараженные одежду, обувь, личные вещи отправить на дезактивацию или захоронение;
- локализовать источник радиационной опасности;
- провести дезактивацию зараженной территории, транспортныхсредствгрузов, оборудования;
- осуществить сбор и удаление радиоактивных веществ.

В случае обнаружения выпавших из вагона с радиоактивными материалами упаковок спасатели должны удалить их с путей подручными средствами без непосредственного соприкосновения с ними, а при отсутствии такой возможности - принять меры к прекращению движения подвижного состава по опасной зоне. Для этого следует выйти навстречу поезду на расстояние не менее 1 км (длина тормозного пути) и подать сигнал машинисту круговым движением руки над головой. В руку можно взять кусок ткани, бумаги, дерева, а в ночное время - фонарь или лампу.Опасную зону необходимо оградить и перекрыть доступ в нее людей.
При обнаружении в вагоне поврежденных или упавших упаковок необходимо закрыть и опломбировать двери, все работы в вагоне прекратить, принять меры к перегону его в безопасное место.

Время пребывания спасателей в опасной зоне зависит отмощности эквивалентной дозы излучения и определяется в каждом конкретномслучае.Работы в опасной зоне должны выполняться при условиипостоянного дозиметрического контроля.

На месте аварии спасатели проводят дезактивацию загрязненной территории, дорог, транспортных средств. Загрязненные радиоактивными веществами предметы, вещи, оборудование, отходы дезактивационных работ тщательно собираются, упаковываются и отправляются на пункты дезактивации или захоронения. При возникновении пожара в пути следования или на местехранения радиационно опасных грузов на станции необходимо удалить их из зоныпожара в безопасное место. Тушение пожара следует производитьвсеми имеющимися средствами.

Тушение пожаров и ликвидация аварий на объектах с наличием радиоактивных веществ должны проводиться под индивидуальным радиационным контролем по специальному допуску, в котором определяются предельная продолжительность работы, дополнительные средства защиты, фамилии участников и лица, ответственные за выполнение работ.

При тушении пожаров на РОО необходимо:

Включить в состав оперативного штаба главных специалистов объекта и службы дозиметрического контроля;

Установить вид и уровень радиации, границы опасной зоны и время работы личного состава на различных участках зоны. Допустимое время работы в смене определяется согласно федеральному законодательству по радиационной безопасности. Режим работы подразделений ГПС определяется руководителем тушения пожара (РТП);

Приступить к тушению пожара только после получения письменного разрешения администрации предприятия, в том числе и в нерабочее время;

По согласованию с администрацией объекта выбрать огнетушащие средства;

При необходимости обеспечить личный состав специальными медицинскими препаратами;

Организовать через администрацию объекта дозиметрический контроль, пункт дезактивации, санитарной обработки и медицинской помощи личному составу;

Обеспечить тушение открытых технологических установок с наличием радиоактивных веществ и источников ионизирующих излучений с наветренной стороны;

По согласованию с администрацией задействовать системы вентиляции и другие средства.

При дозах, приближающихся к допустимому порогу, администрация объекта обязана сообщить об этом РТП. При высоком уровне радиации подразделения ГПС выполняют свои функции по тушению пожара и ликвидации чрезвычайной ситуации только в том случае, если у них имеется достаточно сил и средств и каждому пожарному не грозит превышение предельной допустимой дозы. Регламентация планируемого повышенного облучения личного состава ГПС, привлекаемого к тушению пожара, определяется в соответствии с НРБ-99.

Тушение пожара и ликвидация чрезвычайной ситуации на объектах с наличием радиоактивных веществ должны выполняться с привлечением минимально необходимого количества личного состава (с учетом резерва для сменного режима работы), обеспечив его изолирующими противогазами с масками, средствами индивидуального и группового дозиметрического контроля, защитной одеждой, с использованием пожарной и другой приспособленной техники для работы в условиях воздействия радиации.

Администрация организации обязана:

Обеспечить личный состав подразделений ГПС средствами защиты от излучения, приборами дозиметрического контроля и средствами индивидуальной санитарной обработки людей и дезактивации техники;

Организовать дозиметрический и радиационный контроль облучения участников тушения пожара;

По окончанию тушения (не более суток) выдать установленный документ о полученной дозе облучения каждым участником тушения пожара.

Пожарной разведка проводится несколькими звеньями ГДЗС во главе с опытными командирами, охватывая все возможные направления развития пожара. Каждое звено состоит, как правило, из 4-5 газодымозащитников, а группы разведки возглавляют лица начальствующего состава ГПС.

При аварии на РОО с целью обнаружения зон радиоактивного загрязнения (районов и объектов), определения уровней радиации в местах формирования, размещения, действий и маршрутов выдвижения сил и средств ГПС одновременно с пожарной должна проводиться радиационная разведка, при этом в состав группы разведки должен быть включен дозиметрист.

В подразделениях ГПС, задействованных в тушении пожаров на РОО радиационная разведка проводится табельными средствами разведки, постоянно поддерживается связь с дозиметрической службой РОО.

Для оперативного контроля за радиационной обстановкой целесообразно использовать бронетранспортеры, боевые разведывательно-дозорные машины. С учетом расположения участков работ ГПС, при постановке задачи разведгруппам сообщаются данные, полученные от службы радиационного контроля РОО, указываются ориентировочные маршруты следования и ведения разведки.

При проведении боевого развертывания отделений пожарные автомобили по возможности должны устанавливаться на водоисточники за зданиями, со стороны неповрежденных стен или зданий, которые могут служить экраном от ионизирующих излучений. При перегруппировке сил и средств должна учитываться радиационная обстановка на объекте.

Для ликвидации ЧС на РОО необходимо использовать пожарную и другую технику, имеющую защиту от радиации. При возможности оборудовать пожарную технику противорадиационным надбоем и подбоем.

Пункты сбора (размещения) резервных сил и средств не должны располагаться с подветренной стороны от источников радиоактивного излучения.

На территории РОО сосредоточивается минимальная часть сил и средств ГПС, которые необходимы для выполнения неотложных работ по тушению пожара. Остальные силы и средства отводятся за пределы территории РОО и располагаются на безопасном расстоянии.

Категорически запрещается пребывание в опасной зоне лиц руководящего и начальствующего состава, не связанных с выполнением непосредственных работ по руководству и обеспечению пожарных подразделений. Пункт сбора (размещения) резервных сил и средств не должен размещаться на подветренной стороне от источника радиоактивного излучения.

У входа в опасную зону (здание, помещение) выставляется пост безопасности, возглавляемый лицом среднего или старшего начальствующего состава подразделений ГПС.

Постовой на посту безопасности заполняет Журнал учета работы личного состава подразделений ГПС в условиях радиации (табл.1).

Таблица 1 - Журнал учета личного состава подразделений ГПС в условиях воздействия радиации

Работа по ликвидации пожаров проливов ЛВЖ и ГЖ, а также ЧС и горения на РОО выполняется только в СИЗОД и иных средствах защиты, предусмотренных для конкретных объектов.

Производить включение и выключение из СИЗОД, одевать и снимать защитные костюмы необходимо в установленных безопасных местах. Выключение из СИЗОД производится только после снятия защитных костюмов.

Для снижения степени распыления радиоактивной пыли и вероятности повторного возникновения пожара огнетушащие вещества необходимо подавать тонкораспыленными в виде мощных импульсных струй, распыляющихся на большие расстояния, и только по горящей поверхности.

Запрещается использовать зараженную воду из контура охлаждения атомного реактора для тушения или защиты на пожаре.

Создать резерв сил и средств, звеньев ГДЗС, защитной одежды и приборов индивидуального и группового дозиметрического контроля, который должен находиться вне зоны радиоактивного заражения.

В ходе тушения пожара РТП руководствуется Инструкцией о порядке организации и проведения работ по ликвидации горения и чрезвычайной ситуации на радиационно-опасном объекте (РОО). Он обязан через администрацию объекта организовать инструктаж личного состава подразделений ГПС, направляемого для выполнения боевых задач, по радиационной безопасности с разъяснением характера и последовательности работ, а также обеспечить контроль за временем пребывания его в опасной зоне и своевременной заменой в установленные администрацией (дозиметрической службой) сроки. РТП обязан контролировать:

Непрерывное ведение радиационной разведки;

Своевременное и умелое использование средств индивидуальной и коллективной защиты, защитных свойств техники, пожарно-технического вооружения и местности;

Использование противорадиационных препаратов, антидотов, средств экстренной медицинской помощи;

Выбор наиболее целесообразных способов передвижения и ликвидации горения в зоне заражения;

Строгое соблюдение установленных правил поведения личного состава на зараженной местности;

После пожара организовать санитарную обработку личного состава, работавшего в опасной зоне, и выходной дозиметрический контроль;

Провести дезактивацию и дозиметрический контроль противогазов, одежды, обуви, снаряжения, пожарной техники.

К системам автоматического пожаротушения на локомотивах предъявляются повышенные требования. В их состав должны быть включены системы раннего обнаружения. В основном это . Типичными местами их размещения являются зоны максимального риска: распределительные электрощиты, панели управления, коммутационные шкафы, оборудование, которое встраивается под крышу и подпол локомотива, быстрый доступ к которому затруднен.

Выбор типа огнетушащего вещества, автоматической системы пожаротушения, регламентируется зоной его применения:

  • в замкнутых пространствах типа коммутационных и электрических шкафов целесообразно использовать инертные газы. В таких местах оптимальные условия для создания необходимой концентрации огнетушащего вещества;
  • в зоне нахождения персонала, а также помещениях, оборудованных вентиляционными каналами, используется системы и тонкодисперсного распыления, для дизельных локомотивов и для электровозов;
  • в воздухообменных каналах могут устанавливаться не только детекторы задымления, но и отсекатели дыма, которые относятся к элементам автоматических установок по сдерживанию пожара. Их технические характеристики соответствуют ГОСТ 12.4.009-83 и ГОСТ 12.3.046-91.

Выбор системы пожаротушения

Срабатывание САГПТ «Радуга 5 МГ»:

https://youtu.be/icIj6wDeD7I

Исходя из требований, оптимальной системой для пожаротушения на железной дороге является газовая или комбинированная, которая включает в себя два или больше типа огнетушащего вещества. К АУГП на железнодорожном транспорте предъявляют следующие требования:

  • Огнетушащее вещество должно быть пригодно для ликвидации пожара категории А, В, С, согласно ГОСТ 27331-87 «классификация пожаров». Использоваться при ликвидации возгорания:
    • Полимеров и химических материалов, которые могут гореть или тлеть без доступа воздуха;
    • Гидридов металлов;
    • Натриевых, титановых, калиевых и магниевых порошков;
  • по способу хранения и ОВ локальные модульные или централизованные;
  • по принципу тушения очага возгорания – объемные и локальные;
  • по типу активации, согласно НПБ 88-2001:
    • автоматические;
    • ручные дистанционные или локальные.

Состав автоматизированной газовой системы пожаротушения ЭТ «Радуга 5 МГ»

В качестве пожаротушащего вещества используется хладон 125 и хладон 227. Эти составы высокоэффективны, но не оказывают вредного влияния на электронную аппаратуру и электрические цепи под напряжением. Диапазон рабочих температур составляет -50°С — +60°С. Система поддерживает работоспособность в интервале электрического напряжения от 77 до 164 В. Обнаружение очагов возгорания происходит оптическим (задымление) и температурным способом. При изменении оптической плотности воздуха от 0,05 до 0,2 ДБ/м и/или при достижении температурой критического значения в помещении 70±6°С или при интенсивном росте температуры на 5°С/мин.

Активация функции пожаротушения на локомотиве может происходить в автоматическом режиме или в ручном из кабины машиниста, где расположен пульт индикации БУИ-1.

САП2 ЭТ «Радуга 5МГ» состоит из следующих элементов.

Блок сопряжения БС-2-1 ЭТ

Это устройство является главным управляющим прибором системы. В его функции входит:

  • осуществления связи между однотипными системами до 4 штук;
  • обработка информации поступающей от пожарных извещателей;
  • тестирование шлейфов извещателей и устройств активации газовых модулей на предмет обрыва;
  • ведение электронного журнала событий и запись на энергонезависимую память;
  • переключение на источник аварийного бесперебойного питания в случае отключения основного;
  • в случае поступления сигнала об обнаружении возгорания БС-2-1 ЭТ:
    • включает световое и звуковое извещение. Сирену и информационные таблички «Газ не входи», «Пожар», «Автоматика включена» и другие (см. схему);
    • отключает электровоз от контактной сети;
    • передает сообщение о пожаре через электровозную радиостанцию;

Блок управления и индикации – БУИ-1

Блок управления монтируется в кабине машинистов, он выполняет функции контроля и управления:

  • Формирует и отображает информацию, поступающую от блока сопряжения, для локомотивной бригады;
  • Передает сигнал активации модулей пожаротушения через командное устройство;
  • Передает команду на принудительный опрос шлейфов подключения исполнительных модулей и детекторов системы противопожарной сигнализации;
  • Отключает сирену;
  • Отображает разнообразные сигналы: тест, обрыв шлейфа, короткое замыкание шлейфа, срабатывание датчика, пожар и др.

Световые табло

Предназначены для индикации предупреждений о пожаре.

Выносной пульт отмены

Выносной пульт отмены на локомотиве. Устанавливается в контролируемой зоне на участке с повышенной температурой или возможностью задымления. Отменяет активацию тушения при ложном срабатывании двух детекторов.
Действия локомотивной бригады

При срабатывании пожарной сигнализации локомотивная бригада обязана:

  • Остановить состав на местности, обеспечивающей свободный подъезд пожарных расчетов;
  • Подать сигнал пожарной тревоги в диспетчерскую;
  • Активизировать систему пожаротушения и принять меры по локализации очага возгорания.

Видеоинструкция по применению систем пожаротушения на локомотиве:

https://youtu.be/mpVeGtO5uck

Современная система автоматического пожаротушения на транспорте конструктивно довольно сложна, поэтому требует досконального знания и периодической профилактики.

План реферата
I История атомной промышленности в России.
II Что такое радиоактивные вещества.
III Перевозка радиоактивных веществ.
IV Меры безопасности при перевозке радиоактивных веществ.
V Мероприятия при авариях.
VI Реальные случаи аварий и меры направленные на предотвращение
новых аварий при перевозке радиоактивных веществ.
VII Заключение.
- I -
Более 50 лет назад Советский Союз приступил к решению беспрецедентной по сложности задачи – созданию стратегического паритета в ядерных вооружениях с самой богатой державой мира – США. В рекордно короткие сроки было налажено производство ядерного оружия. Также быстро был создан мощнейший атомный флот, который насчитывал сотни атомных подводных лодок, десятки надводных кораблей с атомными энергетическими установками. Решить сложнейшую задачу удалось благодаря тому, что в тяжелые послевоенные годы в Минсредмаше СССР был сосредоточен колоссальный научно-технический потенциал – над проблемой работали десятки крупных НИИ, конструкторских и проектных организаций, были созданы крупные производства.
В 1954 году в г. Обнинске была пущена первая в мире АЭС. Это событие стало первым шагом в мирном использовании атомной энергии. К 70-м годам атомная энергетика стала важным элементом электроэнергетики страны, в особенности в ее европейской части. Радиоизотопные материалы получили широкое распространение во многих отраслях промышленности, медицине и сельском хозяйстве. СССР стал одним из лидеров в области ядерных технологий.
Научно-технический прогресс не стоит на месте. Со временем появились новые отрасли где используются радиоактивные вещества. Ежегодно в мире транспортируется около 10 млн упаковок с радиоактивными веществами различного вида. Транспортировка это связующее звено производственной деятельности предприятий (АЭС, предприятия ядерного топливного цикла, исследовательские ядерные центры, судовые установки гражданского и военного флотов и др.), осуществляющих обращение с радиоактивными материалами.
- II -
Спектр перевозимых по территории Российской Федерации радиоактивных материалов чрезвычайно широк: ядерные делящиеся материалы (ЯДМ), ядерные материалы (ЯМ), радиоактивные вещества (РВ), отработавшее ядерное топливо (ОЯТ) и радиоактивные отходы, свежее ядерное топливо, уран и плутоний в различных химических соединениях (в различном физическом состоянии и с различной степенью обогащения по делящимся нуклидам), изотопные источники, другие ЯМ и РВ. Их перевозка осуществляется наземным, водным и воздушным транспортом. В нашей стране действуют «Правила безопасности при транспортировании радиоактивных веществ (ПБТРВ-73)».
Настоящие "Правила безопасности при транспортировании радиоактивных веществ (ПБТРВ-73)" распространяются на транспортирование радиоактивных веществ автомобильным, воздушным, железнодорожным, морским и речным транспортом и обязательны для предприятий, организаций и учреждений всех министерств и ведомств, осуществляющих отгрузку, перевозку, погрузочно-разгрузочные работы и хранение радиоактивных веществ. Ответственность за выполнение настоящих Правил возлагается на администрацию указанных предприятий, организаций и учреждений в установленном законом порядке. Правила разработаны в соответствии с требованиями "Норм радиационной безопасности (НРБ-69)", "Основных санитарных правил работы с радиоактивными веществами и другими источниками ионизирующих излучений (ОСП-72)", а также с учетом рекомендаций Международного агентства по атомной энергии (МАГАТЭ), изложенных в "Правилах безопасной перевозки радиоактивных веществ" (1973г.). Они устанавливают требования безопасного транспортирования радиоактивных веществ вне территории предприятия - изготовителя радиоактивных веществ.
Из основных положений правил следует что:
1.1.1. Радиоактивные вещества могут быть в газообразном, жидком или твердом (в виде порошка или монолита) состоянии.
1.1.2. Для транспортирования радиоактивные вещества по видам испускаемых ими излучений разделяются на следующие группы:
- радиоактивные вещества, излучающие наряду с альфа- или бета-частицами гамма-кванты, например: радий-226, кобальт-60, иод-31, иридий-192, цезий-137 и др.;
- радиоизотопные источники нейтронов или смешанного нейтронного и гамма-излучения;
- радиоактивные вещества, излучающие альфа- или бета-частицы, например полоний-210, стронций-90, фосфор-32, сера-35, углерод-14 и др.

Все эти виды излучений при взаимодействии со средой прямо или косвенно создают в ней электрические заряды разных знаков и являются ионизирующими излучениями.

1.1.3. Радиоактивные вещества, которые могут поддерживать цепную реакцию деления атомных ядер, называются делящимися веществами.
К делящимся веществам относятся: уран-233, уран-235, плутоний-238, плутоний-239, плутоний-241 и другие изотопы трансурановых элементов. Транспортирование каждого из указанных изотопов в количестве до 15г или их смеси осуществляется в соответствии с требованиями настоящих Правил.
Ядерно-взрывоопасные делящиеся вещества транспортируются в специальных типах упаковочных комплектов. Правила транспортирования этих веществ регламентируются специальными документами.

1.1.4. Настоящие Правила распространяются на транспортирование радиоактивных веществ в таком количестве, при котором их суммарная активность превышает значения предельно допустимой активности, указанной в Приложении I.

1.1.5. Транспортирование радиоактивных веществ, отвечающих требованиям п. 1.1.4, осуществляется в транспортных упаковочных комплектах.
Транспортный упаковочный комплект представляет собой систему, состоящую из любого сочетания различных устройств, обеспечивающих безопасность доставки, сохранность радиоактивных веществ и предотвращающих попадание их в окружающую среду.
В зависимости от состояния и свойств транспортируемых радиоактивных веществ такая система может включать:
- одну или более емкостей;
- устройство радиационной защиты;
- устройство для охлаждения;
- ограничители расстояний;
- сорбирующий материал;
- тепловую изоляцию;
- устройство для снижения давления.

1.1.6. Транспортные и промышленные упаковочные комплекты, в которых содержатся радиоактивные вещества, называются радиационными упаковками.
Груз, состоящий из одной (или из большего количества) радиационной упаковки, называется радиационным грузом или грузом радиоактивных веществ.
- III -
Транспортировка на территории нашей страны радиоактивных веществ регламентируется Федеральным Законом Об использовании атомной энергии. Настоящий Федеральный закон определяет правовую основу и принципы регулирования отношений, возникающих при использовании атомной энергии, направлен на защиту здоровья и жизни людей, охрану окружающей среды, защиту собственности при использовании атомной энергии, призван способствовать развитию атомной науки и техники, содействовать укреплению международного режима безопасного использования атомной энергии.
Статья 45. Транспортирование ядерных материалов и
радиоактивных веществ
Транспортирование ядерных материалов и радиоактивных веществ должно осуществляться в соответствии со специальными правилами, правилами транспортирования особо опасных грузов, с нормами и правилами в области использования атомной энергии, законодательством Российской Федерации в области охраны окружающей среды.
Правила транспортирования ядерных материалов и радиоактивных веществ должны предусматривать права, обязанности и ответственность отправителя, перевозчика и получателя, меры безопасности, физической защиты, систему согласованных мер по недопущению транспортных происшествий и аварий при перевозке ядерных материалов и радиоактивных веществ, требования к упаковке, маркировке и транспортным средствам, мероприятия по локализации и ликвидации последствий возможных аварий при транспортировании указанных материалов и веществ. Правила транспортирования ядерных материалов и радиоактивных веществ должны предусматривать все возможные виды транспорта.
Перевозчик ядерных материалов и радиоактивных веществ должен иметь разрешение (лицензию), выданное соответствующим органом государственного регулирования безопасности, на право ведения работ в области использования атомной энергии.
- IV -
Обеспечение безопасности транспортирования РВ, ЯДМ и изделий на их основе имеет большое значение в связи с наличием потенциального риска нанесения ущерба людям, окружающей среде и имуществу в процессе их перевозки, выполнения погрузочно-разгрузочных операций и промежуточного хранения.
Наличие такого риска обусловлено возможностью аварии транспортного или погрузочного средства, воздействием на упаковки разрушающих механических и тепловых нагрузок в процессе перевозки, которые могут привести к рассеянию РВ в окружающую среду и облучению персонала сверх установленных норм при нарушениях правил безопасного обращения с упаковками.
Статья 46. Предупреждение транспортных происшествий
и аварий при транспортировании ядерных
материалов и радиоактивных веществ
При транспортировании ядерных материалов, радиоактивных веществ транспортные организации с участием отправителей и получателей указанной продукции, эксплуатирующих организаций, а при необходимости - органов местного самоуправления, соответствующих органов государственного регулирования безопасности, в том числе органов государственного санитарно-эпидемиологического надзора, органов внутренних дел и формирований гражданской обороны обязаны осуществлять мероприятия по предупреждению транспортных происшествий и аварий и по ликвидации их последствий, а также мероприятия по защите работников объектов использования атомной энергии, населения, окружающей среды и материальных ценностей.
Для ликвидации последствий аварий при транспортировании ядерных материалов и радиоактивных веществ используются также региональные аварийные формирования эксплуатирующих организаций. Порядок формирования, функционирования и финансирования региональных аварийных формирований эксплуатирующих организаций устанавливается Правительством Российской Федерации.
Согласно этой статье закона в России созданы региональные аварийные формирования эксплуатирующих организаций, используемых для ликвидации последствий аварий при транспортировке ядерных материалов и радиоактивных веществ. Аварийно-спасательными формированиями, используемыми для ликвидации последствий аварий при транспортировке ядерных материалов и радиоактивных веществ, являются аварийно-технические центры Федерального агентства по атомной энергии с базами дислокации в научно-производственном объединении "Радиевый институт имени В.Г. Хлопина" (г. Санкт-Петербург), Российском федеральном ядерном центре - Всероссийском научно- исследовательском институте экспериментальной физики (г. Саров, Нижегородская область), Российском федеральном ядерном центре - Всероссийском научно-исследовательском институте технической физики (г. Снежинск, Челябинская область), на Сибирском химическом комбинате (г. Северск, Томская область), Нововоронежской АЭС (г. Нововоронеж, Воронежская область), а также Отдельный военизированный горноспасательный отряд с базой дислокации в ОАО "Приаргунское производственное горно-химическое объединение" (г. Краснокаменск, Читинская область). Аварийно-спасательные формирования обслуживают районы и территории по Перечню согласно Приложению. Федеральное агентство по атомной энергии в случае необходимости вносит изменения в указанный Перечень. Аварийно-спасательные формирования входят в состав сил постоянной готовности федерального уровня единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций
В случае возникновения аварий при транспортировке радиоактивных веществ выработан порядок действий для их ликвидации, который прописан в Правилах безопасности при транспортировании радиоактивных веществ (ПБТРВ-73).

4.3. Мероприятия при авариях
4.3.1. В аварийных ситуациях (столкновение, падение, взрыв или загорание упаковок или транспортных средств) радиационная опасность может возникнуть в результате полного или частичного разрушения защитного контейнера и выпадения из него первичной емкости, при этом в зоне аварии может произойти повышение мощности дозы гамма- и нейтронного излучения, а при разрушении первичной емкости, кроме того, и попадание радиоактивных веществ в окружающую среду.
При обнаружении указанных разрушений, а также при крушениях и катастрофах, в результате которых произошло полное или частичное механическое разрушение металлоконструкций транспортных средств или их плавление в результате пожара (когда нельзя определить степень разрушения упаковочных комплектов), необходимо:

Удалить из возможно опасной зоны людей на расстояние не менее 50 м;
- немедленно сообщить о случившемся администрации ближайшей станции, порта, аэропорта, которая обязана в срочном порядке оповестить местные и ведомственные органы санитарного надзора, местные органы Министерства внутренних дел, грузоотправителя, а также вышестоящие транспортные инстанции (если на месте аварии или катастрофы невозможно установить отправителя радиационного груза, то необходимо сообщить о случившемся администрации станции, порта, аэропорта отправления, которая обязана оповестить отправителя о наличии радиационного груза на транспортном средстве, потерпевшем аварию или катастрофу);
- оградить возможно опасную зону подручными средствами радиусом 10 м от места аварии, не допускать в нее посторонних лиц.

4.3.2. Специалисты грузоотправителя должны прибыть на место аварии в возможно короткий срок и при наличии радиационной опасности провести следующие мероприятия:
- определить радиационную обстановку, установить границы радиационно-опасной зоны и оградить ее предупредительными знаками, а также определить уровни загрязненности радиоактивными веществами участков, транспортных средств, грузов и т.п.;
- выявить людей, подвергшихся переобучению или радиоактивному загрязнению. Лиц, облученных в дозе свыше 25 бэр, направить на медицинское обследование; лиц, получивших загрязнение радиоактивными веществами, отправить на санобработку; их одежду, обувь и личные вещи - на дезактивацию или захоронение;
- составить план ликвидации радиационной аварии, в котором (в зависимости от масштаба аварии) должны быть предусмотрены следующие основные мероприятия: формирование рабочих бригад для ликвидации радиационной аварии и их инструктаж;
- обеспечение радиационного контроля; определение средств ликвидации аварий; локализация участка радиационной аварии в целях обеспечения проведения восстановительных работ; дезактивация участка аварии, транспортных средств, грузов, оборудования, спецодежды и т. п.;
- сбор и удаление радиоактивных отходов;
- организация медицинского наблюдения за пострадавшими;
- определение степени пригодности грузов для дальнейшего использования; расследование причин аварии и составление отчетных документов об аварии.
4.3.3. Если радиационной разведкой установлено, что радиоактивных загрязнений нет, мощность дозы гамма-излучения или плотность потока нейтронов соответствует транспортной категории транспортных радиационных упаковок, что свидетельствует о наличии в упаковке радиоактивного вещества, и защитный контейнер не имеет разрушений, при которых возможно выпадение первичной емкости, то такие упаковки отправляются по назначению.

4.3.4. Грузоотправитель разрабатывает план ликвидации последствий возможной радиационной аварии и согласовывает этот план с местными органами санитарного и государственного пожарного надзора и транспортной организацией.
В этом плане для временного хранения и транспортирования грузов радиоактивных веществ предусматриваются мероприятия, изложенные в п. 4.3.1 и 4.3.2.

4.3.5. Радиационные упаковки, имеющие разрушения, указанные в п. 4.3.1, помещаются в дополнительную герметичную защитную тару грузоотправителя (при необходимости с поглощающим материалом) и отправляются по его заявке в строгом соответствии с настоящими Правилами.

4.3.6. Дезактивационные и другие работы по ликвидации последствий радиационной аварии проводятся формированиями Гражданской обороны (ГО) или специально обученным и проинструктированным персоналом, имеющим средства ин¬дивидуальной защиты, под контролем органов санитарного надзора и при соблюдении всех мер радиационной безопасности согласно ОСП-72.
На месте радиационной аварии производят дезактивацию загрязненных участков территории, дорог, крупногабаритных предметов и транспортных средств. Остальные загрязненные радиоактивными веществами предметы, вещи, оборудование, а также отходы дезактивационных работ должны быть тщательно упакованы и отправлены в пункты дезактивации или захоронения

4.3.7. При выполнении работ по ликвидации последствий радиационных аварий необходимо проводить индивидуальный дозиметрический контроль, а также использовать средства механизации и дистанционный инструментарий.

4.3.8. Загрязненность радиоактивными веществами привлеченных к ликвидации радиационных аварий людей, их спецодежды, средств индивидуальной защиты, специального оборудования и транспортных средств для перевозки радиоактивных веществ, не должна превышать значений, указанных в Приложении I.

4.3.9. Результаты работ по ликвидации последствий радиационной аварии оформляются актом, к которому прилагаются протоколы дозиметрических и радиометрических измерений, и отправляются установленным порядком всем заинтересованным организациям.
- VI -
Но несмотря на строгий контроль со стороны государства и чётко прописанные законы, аварии при перевозке радиоактивных веществ происходят на протяжении всего периода использования радиоактивных веществ.
Например происшедшая авария на Уральском электрохимическом комбинате (УЭХК г. Новоуральск). В 1994г. при перевозке сернокислого урансодержащего раствора между объектами УЭХК, в результате чего на полотно дороги общего пользования было пролито около 1000л радиоактивного раствора. Основной причиной аварии были грубые нарушения действующих в России правил перевозки ядерных материалов.
В Ленинградской области 8 ноября 2007 года произошло ДТП с участием машины, перевозившей радиоактивные вещества. Как сообщает РИА Новости, специальный автомобиль, который вез отходы из расположенного в Гатчине Института ядерной физики имени Константинова, съехал в кювет из-за того, что дорога была скользкой. "Интерфакс" со ссылкой на МЧС уточняет, что ДТП произошло вблизи населенного пункта Дятлицы Ломоносовского района и что грузовик перевернулся. Место происшествия было обследовано сотрудниками спецкомбината "Радон", куда направлялся автомобиль. По данным источника, близкого к предприятию, машина получила небольшое повреждение, однако "россыпи груза не было". Радиационный фон на месте происшествия в норме. Извлеченная из кювета машина отправилась к комбинату. Перевозимый груз представляет собой твердые негорючие отходы - землю и фильтры.
Аварии случаются не только в нашей стране. На американском федеральном шоссе I-81 в среду, 23 сентября 2009 года, произошла авария при перевозке радиоактивных материалов. Грузовой автомобиль с отходами перевернулся в районе округа Люцерн, штат Пенсильвания. По сообщениям представителей служб реагирования в чрезвычайных ситуациях, опубликованных в местной прессе, водитель грузовика не пострадал, но содержимое автомобиля разлилось в месте аварии. Прибывшие спасатели обнаружили только низкоактивные отходы.
Аварии могут произойти на любом виде транспорта, в любой стране, где осуществляются перевозки опасных веществ. В них могут быть повинны как техногенные факторы, так и человеческий фактор. Не соблюдение установленных норм, нарушение техники безопасности, халатность могут привести к ужасающим последствиям. Необходимо неукоснительно соблюдать все правила предусмотренные для перевозок радиоактивных веществ, а так же регулярно проводить профилактические мероприятия, направленные на отработку слаженных действий по ликвидации последствий аварии. Например, проведение учений, описание одних из них приведено ниже.
На Александровском тракте потерпел аварию спецавтомобиль, перевозивший радиоактивные вещества. Потеряв управление, машина съехала с дорожного полотна на обочину дороги. В ловушке искореженной кабины оказался экипаж из двух человек – водитель и дозиметрист, – они ранены, находятся без сознания. Работающий двигатель машины и разлившееся из поврежденного бака топливо создали реальную угрозу возгорания.

По такому сценарию 27.08.07г. на острове Юность проходили учения с участием пожарных, спасателей, врачей медицины катастроф, работников спецкомбината «Радон» и подразделений ГИБДД. Согласованность действий при ликвидации дорожно-транспортных происшествий в условиях возможного радиоактивного загрязнения отрабатывалась в условиях, максимально приближенных к реальным.

– По правилам транспортировки особо опасных радиоактивных грузов, перевозящую их машину сопровождает вторая, – комментирует ход учений директор спецкомбината радиационной безопасности «Радон» Эдуард Минаев. – У нас выезжает всегда по два спецавтомобиля, каждый из которых оснащен всем необходимым, в том числе связью (радиосвязь плюс сотовая). В 14.00 дан старт спасательной операции, водитель и дозиметрист машины сопровождения спецкомбината «Радон» пытаются оказать помощь пострадавшим коллегам. Из-за того, что двери машины заклинило, попасть внутрь им не удается, также невозможно снять показания бортовых приборов, которые следят за состоянием радиоактивного вещества, покоящегося в кузове поврежденного авто. Приходится проводить дозиметрический контроль: выясняется, что радиационный фон в пределах допустимой нормы – контейнер не разгерметизирован. О произошедшем ДТП сообщается в диспетчерскую предприятия, откуда сигнал подается в единую службу спасения 01. По условиям вводной, авария произошла на тракте, в 15 километрах от объекта комбината, который оснащен всей необходимой техникой для ликвидации ее последствий. Вой сирен нарушает тишину острова Юность, к месту предполагаемой катастрофы прибывают оперативная группа комбината, лаборатория радиационного контроля, подвижная радиостанция, пожарные расчеты, автокран, сотрудники медицины катастроф. Идет эвакуация пострадавших, оказание им первой медицинской помощи, пожарные смывают разлившееся топливо, чтобы предотвратить возгорание. Экипажи ГИБДД устанавливают периметр оцепления, регулируют движение в районе ДТП. Успешное изъятие спецконтейнера из кузова искореженного автомобиля и доставка его с помощью крановой установки в машину сопровождения – логическая концовка события, которое вполне могло иметь место в жизни.

– Подобная ситуация была в истории предприятия, – вспоминает Эдуард Минаев. – Лет 15 назад на улице Трактовой в нашу машину, перевозившую радиоактивные вещества, въехал МАЗ – у водителя этого грузовика случился инфаркт, и машина оказалась неуправляемой. Нашим людям повезло, они остались живы, утечки не произошло, но специальный автомобиль тогда пришлось списать.

VII -
Из всего выше перечисленного можно сделать вывод, что к данной проблеме в нашей стране относятся с огромным вниманием. Ввод в годовое обращение сотен тонн высокорадиоактивного ядерного топлива и других радиоактивных веществ требует больших усилий для создания высочайшей технологической культуры. Сегодня ответственность за решение этой задачи очень велика, так как авария не только на АЭС, но и при перевозке грузов с большой радиоактивностью может повредить здоровью большого числа людей, профессионально не имеющих отношения к ядерной технологии. Потому что перевозка радиоактивных материалов осуществляется в основном за пределами предприятий и организаций, т.е. в местах, со свободным доступом населения, которое первым ощутит на себе последствия транспортной аварии при перевозке радиоактивных веществ.
В обеспечение высокого уровня безопасности и эффективного снижения ущерба от возможных инцидентов Минатом России за последние годы вложил серьезные усилия в ужесточение требований по безопасности и повышение безопасности радиационных производств. В отрасли создана система Аварийно-технических центров и Аварийно-спасательных формирований с современными средствами локализации возможных аварий.
Достигнутый уровень ядерной и радиационной безопасности базируется на многолетних и значительных технологических достижениях атомной промышленности и техники, созданной системы государственного управления, контроля и надзора, поддержание и совершенствование которой является безусловным приоритетом в обеспечении ядерной и радиационной безопасности.

Радиационная обстановка на железных дорогах России

Радиационную обстановку на ж.д. транспорте России в целом можно оценивать величиной радиационного фона (р.фона) на его территории. Радиационный фон земли складывается из трех составляющих: природного (естественного фона); техногенно-измененного естественного фона; искусственного (техногенного) фона.

Естественный р.фон создается космическим излучением и излучением от естественно распределенных природных радиоактивных веществ в окружающей среде. В свою очередь космическое излучение подразделяют на галактическое и солнечное излучения.

Следует различать первичные космические частицы (a ++ р+ п 0 b --) легких химических элементов – лития, бора, углерода, азота и др., вторичные (мезоны, п 0 , р + , b --) и фотонные излучения, которые образуются в результате взаимодействия первичных частиц с ядрами атомов атмосферы (N, O и др.). Космическое первичное излучение почти полностью исчезает на высоте 20 км. Излучения от естественно распределенных в окружающей среде радионуклидов дополняют естественный р. фон.

В окружающей среде земли содержится более 60 природных радионуклидов урано-радиевого, ториевого ряда и долгоживущих радионуклидов калия -40, рубидия-87 и др., период полураспада которых лежит в пределах от 10 7 до 10 15 лет. Величина естественного рад. фона не постоянна. Она зависит от процессов, протекающих в галактике и солнечной активности, а также от геологических особенностей региона (района, участков земли).

Техногенно-измененная составляющая естественного рад. фона обусловлена широким использованием в хозяйственной деятельности природных ископаемых, материалов, веществ, которые содержат природные радионуклиды.

Каменный уголь, газ, нефть, различные руды, минералы, химические удобрения, глины, пески содержат природные радионуклиды, такие как калий-40, уран-238, радон-226, свинeц-210, торий-232 и др.

Добыча полезных ископаемых, их технологическая обработка и использование в различных производствах (выплавке чугуна, стали, производстве цемента, кирпича и др.) расширяет сферу нахождения радионуклидов, увеличивает р. фон Земли.

Искусственный (техногенный) р.фон вызван появлением в окружающей среде искусственных радионуклидов, источником которых являются: испытания ЯО; предприятия по добыче и переработке урановых и ториевых руд, обогащении ядерного топлива ураном-235, изготовлению ТВЭЛов для АЭС, переработке и хранении ядерных отходов; работа АЭС и др. производств подобного рода.

Продукты деления, выпадающие из облака ЯВ, представляют смесь около 80 изотопов 35 химических элементов средней части Периодической системы элементов. Всего же на разных этапах радиоактивного распада возникает около 300 радионуклидов при ЯВ.



Спектр радионуклидов, поступающих из ядерного реактора в окружающую среду, общее их количество и концентрация во внешенй среде зависят от типа ядерного реактора, используемых систем очистки воздуха и сбросных вод. При работе реактора во внешнюю среду поступают благородные газы (9 изотопов криптона, 11 изотопов ксенона). При изготовлении уранового топлива, его переработке возможны выбросы долгоживущих радионуклидов: водорода-3. углерода-14, криптона-85, стронция-90, цезия-137, рубидия-106 и др. Особо опасны аварии на АЭС, при которых количество нуклидов, выброшенных в окружающую среду, может быть намного больше указанного.

В результате Чернобыльской катастрофы в 19 субъектах РФ выявлены значительные площади, загрязненные цезием-137 с поверхностной активностью 1-5 Ки/км 2 .

На ядерных полигонах РФ до 1988г (до введения моратория на ЯВ) было осуществлено около 130 ЯВ, большая часть из которых осуществлена в атмосфере. Кроме этого, в различных регионах страны было проведено около 80 подземных ЯВ (до 1988 г.) в мирных целях для создания подземных емкостей, тушения пожаров на газовых фонтанах, для зондирования земной коры и др. целей.

Таким образом, радиационная обстановка на федеральном ж.д. транспорте определяется в целом тремя составляющими р. фона. В частностях, она может в большей степени зависеть от специфики и характерной особенности региона (района, территории) и характера транспортируемого груза.

На радиационную обстановку могут оказывать влияния: наличие в окрестностях железных дорог месторождений урановых и ураносодержащих руд, фосфористовых, калийных месторождений и др. полезных ископаемых, открытых выходов гранитов, диоритов и др. вулканических пород; возможные потери при перевозках ж.д. транспортом сыпучих грузов, содержащих радионуклиды; выпадение радиоактивных осадков при испытаниях ЯО и ЯВ, проводимых в мирных целях; выпадение радиоактивных осадков, вызванных авариями на предприятиях ЯТЦ; эксплуатация предприятий ЯТЦ и др. причины.

Детальное исследование радиационной обстановки на ж.д. транспорте было проведено в период с 1990-1995 г.г. За этот период была обследована практически вся сеть ж.д. России. В работах принимали активное участие специалисты ВНИИЖТ, МИИТа, а также специалисты научно-исследовательских и проектных организаций Академии наук и др. министерств и ведомств. Особую помощь в организации методологического и метрологического обеспечения работ оказали специалисты Комиссии радиационной безопасности г. С-Петербурга. Результаты работы обобщены в Атласе радиационной обстановки на сети железных дорог РФ и научных отчетах по данной проблеме.

В качестве «рейперного» радионуклида техногенного загрязнения был принят нуклид цезия, а «рейперных» радионуклидов естественного характера были приняты нуклиды урана и калия.

Диапазон загрязнения ж.д. полотна на сети железных дорог России радионуклидом цезия лежит в широких пределах и колеблется от 0,5 до 30 Ки/км 2 . На отдельных участках Брянского отделения Московской железной дороги загрязненность может быть более указанной величины.

Протяженность загрязненных участков железных дорог колеблется от нескольких сантиметров до сотен километров. Величины мощностей экспозиционной дозы (МЭД) по выполненным измерениям составляют от нескольких десятков до максимальных величин в 500 и более мкР/ч. Характерными примерами участков железнодорожных путей, подвергнувшихся радиоактивному загрязнению на незначительном протяжении (от одного метра до километра) могут служить загрязнения, зарегистрированные на станциях Земцы, Паникля, Оленино, Чертолино (Октябрьской ж.д.) и Макарово (Северной ж.д.). При средней поверхностной активности загрязнения участка радионуклидом цезия до 0,1 Ки/км 2 на них наблюдались «пятна» с повышенной активностью загрязнения до 0,2-0,4 Ки/км 2 .

По геометрическим размерам такие пятна примерно одинаковы и располагаются у светофоров указанных станций. Подобная картина наблюдалась и на станциях Лунинец, Ситница, Лахва (Белорусской ж.д.) и Ракитино, Любань (Октябрьской ж.д.). Поверхностная активность загрязнения на данных станциях достигала 3,5-3,8 Ки/км 2 .Аналогичных фактов зарегистрировано довольно много.

Повышение радиационного фона порой было связано с использованием радиоактивных строительных конструкций и материалов для ремонта и строительства зданий и сооружений. Так на ст. Инская (Западно – Сибирская ж.д.), где в качестве балласта пути использована гранитная щебенка розовато-серого цвета с повышенным до 40 мкР/ч МЭД гамма-излучения.

В 1992 г. в г. Глазов на ж.д. путях и прилегающем участке городской территории выявлено загрязнение, где МЭД гамма-излучения составляла до 2650 мкР/ч по измерениям прибором ДБГ-06Т на площади 15х1,5 м. Рядом, на пункте хранения вторчермета, расположенного вдоль ж.д. путей, выявлено 9 мест загрязнений площадями от 0,15х0,15 до 1,0х1,0 м с МЭД до 2000 мкР/ч при фоновых значениях 7-14 мкР/ч. Спектрометрические определения двух проб показали на промышленное содержание урана.

Наибольшее количество аномалий, связанных с перевозками различных грузов, в 1993г. зарегистрировано на линии Киров-Пермь. Так, на перегоне Бумкомбинат-Просница в составе грузового поезда зарегистрирована аномалия урановой природы с МЭД g-изл. 323 мкР/ч. В 1994 г. за 4 суток контроля в районе ст. Лужайка (Октябрьской ж.д.) в обоих направлениях мимо поста контроля зарегистрировано 22 случая транспортировки грузов, обладающих повышенным уровнем радиации. В 15 случаях в контейнерах, следующих из Финляндии в Японию, зарегистрировано приращение р. фона над окружающим до 35 мкР/ч. По таможенным документам в контейнерах перевозился гранит. В двух полувагонах с древесиной (экспортные поставки) отмечено увеличение фона до 27 мкР\ч, обусловленное наличием цезия. В 4 вагонах, груженных огнеупорным кирпичем, зарегистрировано приращение фона до 37 мкР/ч. Фоновые приращения регистрируются при перевозках минеральных удобрений и других материалов.