Мероприятия обеспечивающие оптимальные микроклиматические условия. Мероприятия по улучшению параметров микроклимата. Методы расчета воздухообмена рабочей зоны. Температура и скорость движения воздуха, влажность

Требования состояния воздуха рабочей зоны производственных помещений может быть обеспечено выполнением определенных мероприятий, к основным из них относятся:

1. Механизация и автоматизация производственных процессов, дистанционное управление ими. Автоматизация процессов, сопровождающихся выделением вредных веществ, повышает производительность труда и улучшает условия труда, поскольку рабочие выводятся из опасных зон.

2. Применение технологических процессов и оборудования, исключающих образование вредных веществ или попадание их в рабочую зону.

Это достигается:

Заменой токсичных веществ нетоксичными;

Переходом с твердого и жидкого топлива на газообразное;

Электрический высокочастотный нагрев и др.

Защита от источников тепловых излучений.

Интенсивность облучения рабочих в ряде случаев составляет значительную величину (до 3000 – 6000 Вт/м² и более). В этих случаях лучистый поток теплоты становится основным вредным производственным фактором.

Способы защиты от лучистого потока теплоты и высоких температур следующие:

Теплоизоляция нагретых поверхностей;

Экранирование тепловых излучений;

Применение воздушного душирования воздушной среды;

Организация рационального отдыха в период работы.

3. Устройство вентиляции и отопления.

4. Применение средств индивидуальной защиты.

МИКРОКЛИМАТ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ.

Существенное влияние на состояние организма работника, его работоспособность оказывает микроклимат (метеорологические условия) в производственных помещениях, под которым понимают климат внутренней среды этих помещений, который определяется действующей на организм человека совокупностью температуры, влажности, скорости движения воздуха, давления и теплового излучения от нагретых поверхностей.

В отличие от микроклимата жилых и общественных сооружений микроклимат производственных помещений характеризуется значительной динамичностью и зависит от колебаний внешних метеорологических условий и времени года, теплофизических особенностей технологического процесса, условий отопления и вентиляции.

Микроклимат производственных помещений, в основном, влияет на тепловое состояние организма человека и его теплообмен с окружающей средой.

1. ТЕПЛООБМЕН ЧЕЛОВЕКА С ОКРУЖАЮЩЕЙ СРЕДОЙ.

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Для того чтобы физиологические процессы в организме человека происходили нормально, тепло, которое выделяется организмом человека, должно полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреванию или к переохлаждению организма человека и, в конце потере работоспособности, потере сознания и к тепловой смерти Величина тепловыделения организмом человека зависит от степени физической нагрузки, определенных климатических условий и составляет от 85 (в состоянии покоя) до 500 Дж/с (тяжелая работа).

Нормальное тепловое самочувствие имеет место, если тепловыделение (Q тв) организма человека полностью воспринимаются окружающей средой (Q тн) то есть если имеет место тепловой баланс (Q тв)=(Q тн), когда температура внутренних органов остается постоянной в пределах 36,6 °С.

Организм человека способен поддерживать устойчивую температуру тела при достаточно широких колебаниях параметров окружающей среды. Так, тело человека сохраняет температуру близкую 36,6 0Спри колебаниях окружающей температуры от -40 °С до +40 °С. При этом температура отдельных участков кожи и внутренних органов может быть от 24 °С до 37,1 °С.

Наиболее интенсивные обменные процессы происходят в печени, ее температура - 38,0...38,5 °С. Существует суточный биоритм температур кожи: максимальная (37,0...37,1 °С) в 16.00...19.00, минимальная (36,0. .36,2 °С) в 2.00...4.00 по местному времени.

Уравнение теплового баланса окружающей среды человека впервые было проанализировано в 1884 году профессором Флавицким И.И. Теплообмен

между человеком и окружающей средой осуществляется конвекцией вследствие обтекания тела воздухом (g k),теплопроводностью через одежду (g), излучением на окружающие поверхности (g) и в процессе тепломассообмена (Q TM) Рй выпаривании влаги, которая выводится на поверхность потовыми железами (g п)и при дыхании (g д):

Q TH = g + g + g + gп + gд, (1)

Конвективный теплообмен определяется по закону Ньютона:

g= α K F e (t пов -t нс), (2)

где t пов - температура поверхности тела человека (зимой -27,5 °С, летом - 31 °С);

t нс - температура окружающей среды,

F e , - эффективная поверхность тела человека (50...80% геометрической внешней поверхности тела человека). Для практических расчетов она принимается равной 1,8 м 2 ;

α K - коэффициент теплоотдачи конвекцией, α K =4,06 Вт/(м 2 град).

Величина и направление конвективного теплообмена человека с окружающей средой определяется, преимущественно, температурой окружающей среды, барометрическим давлением, скоростью движения и влагосодержанием воздуха.

Уравнение Фурье, которое описывает теплопроводность в одномерном теплопроводном поле, можно записать в виде:

где α 0 - коэффициент теплопроводности тканей одежды человека, Вт/град;

Теплообмен излучением происходит за счет электромагнитных волн между телами, разделенными лучепрозрачной средой. Тепловая энергия, превращаясь на поверхности горячего тела в лучистую, передается на холодную поверхность, где снова превращается в тепловую. Лучистый поток тем больше, чем меньше температура поверхностей, которые окружают человека и может быть определена с помощью обобщенного закона Стефана-Больцмана:

(4)

где: T 1 - средняя температура поверхности тела и одежды человека, К;

T 2 - средняя температура окружающих поверхностей, К;

γ 1-2 - коэффициент излучения, зависящий от расположения и размеров поверхностей F 1 и F 2 и указывающий на частицу лучистого тепла, которая приходится на поверхность F 2 , от всего потока, который излучается поверхностью F 1 ;

Спр = С 1 х С 2 /С 0 - приведенный коэффициент излучения, Вт/(м 2 К 4);

Со - коэффициент излучения абсолютно черного тела.

Количество тепла, которое отдается человеком в окружающую среду при испарении влаги, которая выводится на поверхность кожи потовыми железами, определяется по формуле:

где: G П - количество влаги, которая выделяется и испаряется, кг/с;

г - скрытая теплота выпаривания влаги, которая выделяется, Дж/кг.

Количество тепла, которое отдается в окружающую среду с поверхности тела при испарении пота, зависит не только от температуры воздуха и интенсивности работы, выполняемой человеком, но и от скорости движения окружающего воздуха и его относительной влажности.

Количество тепла, которое расходуется на нагревание вдыхаемого воздуха, можно определить за уравнением:

где: V ЛВ - легочная вентиляция, м 3 /с;

ρ ВД - плотность влажного вдыхаемого, кг/м 3 ;

Ср - удельная теплоемкость вдыхаемого, Дж/(кг/град);

t вид - температура выдыхаемого воздуха, °С;

t вд - температура вдыхаемого, °С.

Легочная вентиляция - это объем воздуха, который вдыхается человеком в единицу времени. Она определяется как произведение объема воздуха, который вдыхается за один вдох, на число циклов дыхания в секунду.

Количество теплоты, которое выделяется человеком с выдыхаемым воздухом, зависит от физической нагрузки, влажности и температуры окружающего воздуха.

В целом тепловое самочувствие человека зависит от интенсивности физической нагрузки организма, температуры окружающих предметов и параметров микроклимата (температуры, скорости движения и относительной влажности воздуха, барометрического давления, интенсивности излучения от нагретых поверхностей).

1. ВЛИЯНИЕ ПАРАМЕТРОВ МИКРОКЛИМАТА НА САМОЧУВСТВИЕ

ЧЕЛОВЕКА.

Параметры микроклимата оказывают непосредственное влияние на самочувствие человека и его работоспособность. Снижение температуры для всех других условий приводит к возрастанию теплоотдачи путем конвекции и излучения и может обусловить переохлаждение организма.

Повышение скорости движения воздуха ухудшает самочувствие, поскольку оказывает содействие усилению конвективного теплообмена и процесса теплоотдачи при испарении пота.

При повышении температуры воздуха имеют место обратные явления. Установлено, что при температуре воздуха свыше 16 °С работоспособность человека начинает падать. При такой температуре и влажности воздуха практически все тепло, которое выделяется, отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожи.

Недостаточная влажность приводит к интенсивному испарению влаги со слизистых оболочек, их пересыханию и растрескиванию, загрязнению болезнетворными микробами.

Вода и соли, которые выносятся из организма с потом, должны возмещаться, поскольку их потеря приводит к сгущению крови и нарушению деятельности сердечно-сосудистой системы.

Обезвоживание организма на 6% вызовет нарушение умственной деятельности, снижение остроты зрения. Обезвоживание на 15...20 % приводит к смертельному исходу.

Потеря соли лишает кровь способности удерживать воду и вызовет нарушение деятельности сердечно-сосудистой системы. Из-за высокой температуры воздуха и при дефиците воды в организме усиленно расходуются углеводы, жиры, разрушаются белки.

Продолжительное влияние высокой температуры в сочетании со значительной влажностью воздуха может привести к накоплению теплоты в организме и к гипертермии.

Гипертермия - это состояние человека, при котором температура тела поднимается до 38...40 °С. При гипертермии, и как следствие при тепловом ударе, наблюдается головная боль, умопомрачение, общая слабость, искажение цветного восприятия, сухость во рту, дурнота, блевотина, потовыделение. Пульс и частота дыхания ускоряются, в крови возрастает содержимое остаточного азота и молочной кислоты. Наблюдается бледность, посинение кожи, расширение зрачков, временами возникают судороги, потеря сознания.

Из-за пониженной температуры, значительной скорости движения и влажности воздуха возникает переохлаждение организма (гипотермия ). На начальном этапе влияния холода наблюдается снижение частоты дыхания, увеличение объема вдоха. Из-за продолжительного влияния холода дыхание становится неритмичным, частота и объем вдоха возрастают, изменяется углеводный обмен. Появляется мышечное дрожание, при котором внешняя работа не выполняется, и вся энергия дрожания превращается в теплоту. Это позволяет на протяжении некоторого времени задерживать понижение температуры внутренних органов. Следствием действия низких температур являются простудные заболевания.

Параметры микроклимата служат причиной существенного влияния на производительность труда и на травматизм.

Влияние температуры воздуха на среднюю производительность труда показано на графике (рис.2 1).

Рис. 1. Влияние температуры воздух на производительность труда

4. Мероприятия по нормализации параметров микроклимата.

На сегодняшний день основными нормативными документами, определяющими параметры микроклимата производственных помещений, являются ГОСТ 12.1.005-88 ССБТ «Общие санитарно-гигиенические требования к воздуху рабочей зоны» и ДСН 3.3.042 – 99. Санітарні норми мікроклімату виробничих приміщень. Київ, 1999 р.

Здесь указанные параметры нормируются для рабочей зоны – просторной, ограниченной по высоте 2 м над уровнем пола или площадки, на которой находятся рабочие места постоянного или непостоянного (временного) пребывания работников.

В основу принципа нормирования параметров микроклимата положена дифференциальная оценка оптимальных и допустимых метеорологических условий в рабочей зоне в зависимости от тепловой характеристики производственного помещения, категории работ по степени тяжести и периода года.

Оптимальными (комфортными) считаются такие условия труда, для которых имеет место наибольшая работоспособность и хорошее самочувствие. Допустимые микроклиматические условия предусматривают возможность напряженной работы механизма терморегуляции, которая не выходит за пределы возможностей организма, а также дискомфортные ощущения.

Оптимальные и допустимые параметры микроклимата в рабочей зоне производственных помещений для разных категорий тяжести работ в теплый и холодный периоды года, приведены в таблице 2.2. ГОСТ 12.1.005-88 ССБТ.

Профилактика перегревания работающих в нагревающем мик­роклимате может быть осуществлена за счет:

Нормирования верхней границы внешней термической нагруз­ки на допустимом уровне применительно к 8-часовой рабочей смене;

Регламентации продолжительности воздействия нагревающей среды;

Использования специальных коллективных и индивидуальных средств защиты, направленных на уменьшение поступления теп­ла извне к поверхности тела человека и обеспечения за счет этого допустимого теплового состояния работающих;

Применения средств, направленных на повышение тепловой устойчивости организма, в том числе за счет адаптации к терми­ческой нагрузке, улучшения функционального состояния (витаминизация, рациональный питьевой режим, фармакологические средства и др.).

При работе в охлаждающем микроклимате должное тепловое состояние организма человека также может быть сохранено за счет регламентации времени работы. Период непрерывного пребывания работающих в охлаждающей производственной среде в зависимо­сти от температуры воздуха должен составлять 8, 6, 4, 2 или 1 ч.

Кроме того, для защиты от охлаждения рабочие должны быть снабжены комплектом специальной одежды для защиты от пони­женных температур.

В зимний и переходный периоды года необходимо защищать рабочие места в производственных помещениях от потоков хо­лодного воздуха, поступающих через двери, ворота устройством шлюзов, воздушных завес.

В помещениях больших размеров или на специальном транс­портном оборудовании (подъемные краны и др.) целесообразно облучение передней поверхности тела источником инфракрасного излучения малой интенсивности (0,3 - 0,5 кал/см 2 /мин) на месте работы. В тех случаях, когда подобные меры невозможны, следует устраивать обогреваемые помещения для периодического пребы­вания там работающих.

2.6. Производственный травматизм и вопросы охраны труда на промышленных предприятиях.

Под производственной травмой понимают повреждение, по­влекшее за собой нарушение анатомической целостности ткани (органа) или нарушение нормального функционирования органа или организма, внезапно возникшее на территории предприятия или учреждения под воздействием внешних факторов. К произ­водственным относятся все случаи травм при выполнении человеком порученной ему работы на территории предприятия, а так­же травмы, полученные в пути на работу и с работы.



Травмы могут быть вызваны механическими, термическими и химическими факторами.

К травмам относятся раны, ушибы, переломы костей, отрыв частей тела (пальцев, руки) и др.; ожоги и отморожения; пораже­ния электрошоком, химическими соединениями; кроме того, раз­рыв барабанной перепонки от воздействия интенсивного шума, электроофтальмия у электросварщиков и т.д.

Причины возникновения производственного травматизма де­лятся на две группы: организационно-технические и санитарно-гигиенические.

Организационно-техническими причинами могут быть: конструк­тивные недостатки оборудования с позиций техники безопаснос­ти, недостаточная механизация производственных процессов, от­сутствие или неисправное состояние оградительной техники, не­исправное состояние технологического оборудования и инстру­мента, неудовлетворительный инструктаж и обучение работаю­щих безопасным методам работы, неиспользование средств ин­дивидуальной защиты и др.

Причинами травматизма являются также неблагоприятные са­нитарно-гигиенические условия труда . К ним относятся производ­ственные факторы внешней среды, вредно действующие на организм: неблагоприятные условия производственного микроклима­та, недостаточное и нерациональное освещение, воздействие вы­сокого уровня шума и вибрации, наличие в воздухе производ­ственных помещений токсических веществ и др. Эти факторы мо­гут косвенно способствовать возникновению травм, вызывая у работающих понижение внимания, быстроты и четкости реакции, ухудшение видимости, утомление, болезненное состояние и т.д. В 2000 г. в РФ работали в условиях, не отвечающих санитарно-гигиеническим нормам в промышленности - 21,7 % работников, в строительстве - 10,1 %, на транспорте - 12,4 % и т.д.

В последние 10 лет в РФ число случаев производственного трав­матизма уменьшилось почти в три раза. Если в 1990 г. численность пострадавших составляла 432,4 тыс. чел.,то в 2000 г. - 151,8 тыс. чел.

В значительной мере снижение производственного травматиз­ма обусловлено существенным спадом производства в стране.

Для выяснения и изучения причин производственного травма­тизма здравпунктами и медико-санитарными частями предприя­тий осуществляется регистрация и учет всех травм как с потерей, так и без потери трудоспособности. Травмы с потерей трудоспо­собности регистрируются также администрацией производства.

Медико-санитарная часть должна ежемесячно проводить ана­лиз травматизма и представлять его администрации для выработ­ки действенных мер профилактики.

К числу радикальных мер профилактики производственного травматизма относятся механизация и автоматизация производ­ства, внедрение современных технологий.

Не меньшее значение имеют правильная организация труда, рабочего места, исправность оборудования и инструмента, в не­обходимых случаях - обязательное использование надежных ограж­дений движущихся опасных частей оборудования или экранов для защиты станочника от отлетающей стружки.

Большую роль в профилактике травматизма играет постоянное использование спецодежды, спецобуви, защитных очков и других средств индивидуальной защиты.

Очень важно повышение квалификации работающих, хорошее знание ими правил безопасности работы.

Действенной мерой профилактики является пропаганда меро­приятий по борьбе с травматизмом.

Огромное значение имеет технический надзор за выполнением мероприятий по технике безопасности, который ежедневно осу­ществляется начальниками цехов, участков, мастерами.

Снижению травматизма способствует улучшение санитарных условий труда (обеспечение оптимальной освещенности, сниже­ние уровней шума, улучшение микроклимата на производстве и пр.).

Необходима правильная организация медицинского обслужи­вания пострадавших при производственных травмах для макси­мального ускорения восстановления здоровья рабочих и преду­преждения у них осложнений и инвалидности.

Трудовое законодательство в России охватывает все основные правовые нормы, касающиеся рабочего времени, охраны труда женщин, лиц пожилого возраста, подростков, техники безопасности на производстве и т.д.

Контрольные вопросы:

  • Физические факторы воздуха, формирующие микроклимат на производстве? Их гигиеническое значение?
  • Пути передачи тепла. Механизмы терморегуляция человека?
  • Перегревающий и охлаждающий микроклимат? Патофизиология и клинические проявления?
  • Классификация и характеристика микроклиматических условий труда?
  • Нормирование микроклимата на производстве лечебно-профилактических учреждениях?

· Методы по улучшению производственного микроклимата.

Создание оптимальных метеорологических условий труда в производственных помещениях является сложной задачей.

Для обеспечения нормативных параметров микроклимата в производственных помещениях проводятся технологические, технические, санитарно-технические и организационные мероприятия.

Наиболее радикальными методами управления микроклиматом являются:

Максимально возможная механизация и автоматизация тяжелых и трудоемких работ, выполнение которых сопровождается избыточным теплообразованием в организме человека;

Дистанционное управление теплоизлучающими процессами и аппаратами, исключающими необходимость пребывания работающих в зоне инфракрасного облучения;

Рациональное размещение и теплоизоляция оборудования, коммуникаций и других источников, излучающих тепло в рабочую зону.

Среди организационных мероприятий следует отметить такие как:

Рациональные объемно-планировочные и конструктивные решения производственных зданий;

Рациональное размещение оборудования;

Организация рационального водно-солевого режима работающих с целью профилактики перегрева организма. Для этого к питьевой воде добавляют небольшое количество (0,2 -- 0,5%) поваренной соли и насыщают ее диоксидом углерода (сатурируют).

Устройство в горячих цехах специально оборудованных комнат, кабин или мест для кратковременного отдыха, в которые подается очищенный и умеренно охлажденный воздух;

Для предупреждения переохлаждения и простудных заболеваний работающих у входа в цех устраивают тамбуры или создают воздушные тепловые завесы, которые направляют поток холодного наружного воздуха в верхнюю зону помещения.

56 Отопление помещений, кондиционирования и аэроинизации воздуха

Системы отопления, вентиляции и кондиционирования предназначены для обеспечения нормируемых метеорологических условий и чистоты воздуха на рабочих местах.

Отопление. Отопление проектируется для обеспечения в помещениях расчетной температуры воздуха, которая принимается в зависимости от периода года. Для холодного периода года расчет отопления производится с учетом обеспечения минимальной из допустимых температур. Система отопления – это комплекс конструктивных элементов, предназначенных для получения, переноса и подачи необходимого расчетного количества тепла в обогреваемые помещения. К местным системам относят такие, в которых генератор тепла, нагревательные приборы и теплопроводы находятся непосредственно в отапливаемом помещении и конструктивно объединены в одной установке. К системам центрального отопления относятся такие, в которых генераторы тепла расположены вне отапливаемых помещений. В этом случае генератор тепла и нагревательные приборы отдалены друг от друга. Центральные системы отопления представлены прежде всего водяными, паровыми, воздушными и комбинированными.

Вентиляция. По способу организации воздухообмена вентиляция может быть общеобменной , местной и комбинированной. Общеобменную вентиляцию, при которой смена воздуха происходит во всем объеме помещения, наиболее часто применяют в тех случаях, когда вредные вещества выделяются в небольших количествах и равномерно по всему помещению. Местная вентиляция предназначена для отсоса вредных выделений (газы, пары, пыль, избыточное тепло) в местах их образования и удаления из помещения. Комбинированная система предусматривает одновременную работу местной и общеобменной вентиляции. В зависимости от назначения вентиляции - подача (приток) воздуха в помещение или удаление (вытяжка) его из помещения, вентиляцию называют приточной и вытяжной. При одновременной подаче и удалении воздуха вентиляция называется приточно-вытяжной.

В соответствии с ГОСТ 12.4.021 во всех помещениях должна быть предусмотрена естественная вентиляция, которая может иметь неорганизованный и организованный характер. При неорганизованной вентиляции воздух подается и удаляется из помещения через неплотности и поры наружных ограждений зданий (инфильтрация), а также через форточки, окна, открываемые без всякой системы. Естественная вентиляция считается организованной, если направления воздушных потоков и воздухообмен регулируются с помощью специальных устройств. Систему организованного естественного воздухообмена называют аэрацией.

Обычные системы вентиляции не способны поддерживать сразу все параметры воздуха в пределах, обеспечивающих комфортные условия в зонах пребывания людей. Эту задачу выполняет кондиционирование , которое является наиболее совершенным видом механической вентиляции и автоматически поддерживает микроклимат на рабочем месте независимо от наружных условий.

Кондиционирование воздуха - это автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения) с целью обеспечения, главным образом, оптимальных метеорологических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечения сохранности ценностей культуры.

Различают системы комфортного кондиционирования, обеспечивающие в помещении постоянные комфортные условия для человека, и системы технологического кондиционирования, предназначенные для поддержания в производственном помещении требуемых технологическим процессом условий.

К эксплуатации допускаются вентиляционные системы, полностью прошедшие предпусковые испытания и имеющие инструкции по эксплуатации, паспорта, журналы ремонта и эксплуатации. В инструкции по эксплуатации вентиляционных систем должны быть отражены вопросы взрыво- и пожарной безопасности.

Аэроионизация и требования к аэроионному составу воздуха

Искусственная аэроионизация воздуха производится специальными ионизаторами, например, люстрами Чижевского, которые могут обеспечить в ограниченном объеме заданную концентрацию ионов определенной полярности. Аэроионы повышают умственную и физическую работоспособность, снимают стресс, укрепляют нервную систему, повышают сопротивляемость организма к инфекционным заболеваниям.

Аэроионы характеризуются зарядом частиц и их подвижностью. Различают отрицательные и положительные аэроионы.

Второй важной характеристикой аэроионов является их подвижность - коэффициент К, определяющий перемещение иона в электрическом поле, м 2 /В с. По подвижности весь спектр ионов условно подразделяется на пять диапазонов:

Легкие – с подвижностью К = 1,0 и более;

Средние – с подвижностью 1,0 < К > 0,01;

Тяжелые с подвижностью 0,01 < К> 0,001;

Ионы Ланжевена – с подвижностью 0,001 < К>0,0002;

Сверхтяжелые – с подвижностью К <0,0002.

Санитарные правила регламентируют содержание в воздушной среде производственных и общественных зданий легких аэроионов с подвижностью К, равному или более 1,0 м 2 /Вс.

Для нормализации аэроионного состава воздуха в помещениях используют приточно-вытяжную вентиляцию, групповые и индивидуальные ионизаторы, устройства автоматического регулирования ионного режима воздушной среды.

Контроль уровня аэроионизации в воздухе производственных и общественных помещений, в которых находятся источники аэроионов, системы кондиционирования, должен проводиться в случаях:

При внедрении новых технологических процессов, производственного оборудования, которые могут изменить ионный состав воздушной среды;

При внедрении системы кондиционирования или технических средств нормализации аэроионного состава;

При организации новых рабочих мест в помещениях с системами аэроионизации воздушной среды.

При текущем санитарном надзоре измерения содержания аэроионов производятся не реже одного раза в год.

Борьба с неблагоприятным влиянием производственного микроклимата осуществляется с использованием технологических, санитарно-технических и медико-профилактических мероприятий.

В профилактике вредного влияния высоких температур основное место должны занимать технологические мероприятия: замена старых и внедрение новых технологических процессов и оборудования, автоматизация и механизация процессов, дистанционное управление.

К санитарно-техническим мероприятиям относятся средства локализации тепловыделений и теплоизоляции, направленные на снижение интенсивности теплового излучения и тепловыделений от оборудования.

Эффективными средствами снижения тепловыделений являются: покрытие нагревающихся поверхностей и парогазотрубопроводов теплоизоляционными материалами (стекловата, асбестовая мастика, асботермит и др.); гермитизация оборудования; применение отражательных теплопоглатительных и тепловыделяющих экранов и завес, а также применение водовоздушного и воздушного душирования; устройство вентиляционных систем; использование индивидуальных средств защиты.

К медико-профилактическим мероприятиям относятся: организация рационального режима труда и отдыха; обеспечение питьевого режима; повышение устойчивости к высоким температурам путем использования фармакологических средств (приём дибазола, аскорбиновой кислоты, глюкозы), вдыхания кислорода; прохождение предварительных (при поступлении на работу) и периодических медицинских осмотров.

Мероприятия по профилактике неблагоприятного воздействия холода предусматривают задержку тепла: предупреждение выхолаживания производственного помещения (тепловые, воздушные завесы или тамбуры) подбор рациональных режимов труда и отдыха, использование средств индивидуальной защиты, а также мероприятий по повышению защитных сил организма. Для работающих длительное время на холоде людей предусматривают специально оборудованные помещения для периодического обогрева.

Источники повышенного влаговыделения с открытой поверхностью испарения (ванны, красильные и промывочные аппараты, и другие ёмкости с водой и растворами) снабжают крышками или оборудуют местными отсосами.

Отопление. Система отопления может быть паровой, водяной, воздушной, совмещённой (водяное плюс воздушное) и кондиционированной.

Выбор системы отопления производится в соответствии с категорией производства по взрывопожарной и пожарной опасности со Строительными Нормами и Правилами (СниП) 2.04.05.-91. Допустимые температуры теплоносителя систем отопления принимаются также по СНиП 2.04.05.- 91.

Системы отопления и параметры теплоносителя следует предусматривать с учётом тепловой энерции ограждающих конструкций, характером и назначением зданий. При устройстве систем отопления потери тепла должны составлять не более 10% расхода тепла на отопление.

Системы отопления зданий должны предусматривать: равномерное нагревание воздуха помещения; безопасность в отношении взрыва и пожара; увязку с системами вентиляции; уровни шума в пределах, допустимых нормами; минимальное загрязнение вредными выделениями и неприятными запахами воздуха помещений; удобство при эксплуатации и ремонте.

Температура теплоносителя в помещениях с производствами категорий А, Б, и В не должна превышать 80% от значений пределов самовоспламенения газов, паров, пыли, если возможно соприкосновение с горячими поверхностями оборудования и трубопроводов систем отопления, размещенными внутри рабочих помещений.

Вентиляция. Обеспечение нормальных метеорологических условий и чистоты воздуха на рабочих местах в значительной степени зависит от правильно организованной системы вентиляции. Общие требования к системам вентиляции, кондиционирования воздуха и воздушного отопления производственных зданий и сооружений определены в СНиП 2.04.05.91 «Отопление, вентиляция и кондиционирование». Основное требование СНиПа - работа вен­тиляционных систем должна создавать на постоянных рабочих местах, в рабочей и обслуживаемых зонах помещений метеорологические условия и чистоту воздушной среды, соответствующие действующим санитарным нормам. Технические решения при проектировании вентиляционных систем, а также требования, предъявляемые к ним при сооружении и эксплуатации, должны соответствовать строительным нормам и правилам.

По способу организации воздухообмена вентиляцияможетбыть общеобменной, местной и комбинированной.

Общеобменную вентиляцию, при которой смена воздуха происходит во всем объеме помещения, наиболее часто применяют в тех случаях, когда вредные вещества выделяются в небольших количествах и равномерно по всему помещению.

Местная вентиляция предназначена для удаления вредных выделений (газы, нары, пыль, избыточное тепло) в местах их образования и последующего удаления из помещения.

Комбинированная система предусматривает одновременную работу местной и общеобменной вентиляции. На устройство и эксплуатацию местной вентиляции требуются значительно меньшие затраты.

В зависимости от способа перемещения воздуха вентиляция может быть естественной и механической. При естественной вентиляции воздух перемещается под влиянием естественных факторов: теплового напора или действия ветра. При механической вентиляции воздух перемещается с помощью вентиляторов, эжекторов и др. Сочетание естественной и искусственной вентиляции образует смешанную систему вентиляции.

В зависимости от назначения вентиляции - подача (приток) воздуха в помещение или удаление (вытяжка) егоизпомещения, вентиляцию называют приточной и вытяжной. При одновременной подаче и удалении воздуха вентиляция называется приточно-вытяжной.

В производственных помещениях, в которых возможны внезапные выбросы в воздух рабочей зоны больших количеств вредных или взрывоопасных веществ, предусматривают аварийную вентиляцию.

Во всех помещениях должна быть предусмотрена естественная вентиляция. Естественное движение воздуха в помещении происходит вследствие разности его плотностей вне и внутри помещения (тепловое давление), а также под действием разности давлений наружного воздуха с наветренной и подветренной сторон здания (рис. 9.1). Давление или разрежение зависят от скорости ветра. Наружный воздух может поступать в помещение через открытые проемы с наветренной стороны здания и выходить через отверстия на противоположной подветренной стороне и отверстия в крыше.

Естественная вентиляция значительно дешевле механической, так как большие объемы воздуха поддаются в помещение и удаляются из него без применения вентиляторов и воздуховодов. Вентиляция происходит через вытяжные каналы, шахты, форточки и фрамуги зданий.

Естественная вентиляция может иметь неорганизованный и организованный характер. При неорганизованной вентиляции воздух подается и удаляется из помещения через неплотности и поры наружных ограждений зданий (инфильтрация), а также через форточки, окна, открываемые без всякой системы. Естественная вентиляция считается организованной, если направление воздушных потоков и воздухообмен регулируются с помощью специальных устройств. Систему организованного естественного воздухообмена называют аэрацией. Если аэрация легко поддается регулированию и расчету, то инфильтрация регулированию практически не поддается. Аэрацию, как правило, применяют в цехах со значительными выделениями тепла. Недостаток естественной вентиляции состоит в том, что приточный воздух вводится в помещение без предварительной очистки и подогрева, а удаляемый не очищается от выбросов и загрязняет наружный воздух. Кроме того, эффективность аэрации может существенно падать вследствие повышения температуры наружного воздуха, особенно в безветренную погоду.

Приточный воздух с помощью естественной вентиляции в теплый период года следует подавать на высоте не менее 0,3 м и не более 1,8 м, а в холодный период года - не менее 4 м от уровня пола, чтобы холодный воздух извне не попадал в зону рабочих мест. Общая площадь каналов для подачи воздуха через боковые световые проемы должна быть не менее 20% площади световых проемов, а фрамуги и жалюзи должны иметь устройства, направляющие приточный воздух вверх в холодный период года и вниз в теплый период года. Для удобства открывания фрамуг с отметки пола используют специальные приспособления с ручным или механическим приводом.

Помимо гравитационного давления весьма существенное влияние на аэрацию зданий оказывает и ветровое давление.

Для использования ветрового напора, а также удаления небольших объемов воздуха используют дефлекторы, специальные насадки, устанавливаемые в верхней части вентиляционных каналов. С их помощью усиливают тягу. Поток ветра, обтекая дефлектор, создает в канале некоторое разрежение, в результате чего скорость движения воздуха по каналу увеличивается.

В химической промышленности наибольшее распространение получил дефлектор типа ЦАГИ, его схема дана на рис. 9.2.

Дефлектор представляет собой цилиндрическую обечайку 3, укрепленную над вытяжной трубой. Чтобы облегчить выход воздуха, на конце трубы имеется диффузор. Колпак 4 препятствует попаданию дождя в дефлектор.

При использовании механической вентиляции в отличие от естественной имеется возможность предварительно очищать, нагревать или охлаждать, увлажнять приточный воздух, а также очищать выбрасываемый в окружающую атмосферу загрязненный воздух. Кроме того, воздух можно подавать по воздуховодам в любую зону помещения или удалять его из мест наиболее интенсивного образования вредностей.

В химической промышленности наиболее распространены приточно-вытяжная общеобменная механическая вентиляция, комбинируемая с локальной механической вентиляцией.

К недостаткам механической вентиляции следует отнести необходимость звукоизоляции, значительную стоимость сооружения и эксплуатации, а также большую энергоемкость.

Приточно-вытяжная общеобменная механическая вентиляция состоит из двух отдельных установок: через одну подается чистый воздух,через другую удаляется загрязненный (рис. 9.3).

Отношение количества подаваемого воздуха к количеству удаляемого называется вентиляционным воздушным балансом. При равенстве притока и вытяжки баланс называется уравновешенным, при превышении притока над вытяжкой - положительным, в противоположном случае - отрицательным. Характер воздушного баланса имеет важное санитарно-гигиепическое значение. Так, при отрицательном балансе воздух из вентилируемого помещения со значительными выделениями вредных веществ не перетекает в помещения с меньшими выделениями или в помещения, где этих выделении вообще нет. Положительный же баланс дает возможность практически полностью изолировать помещение от проникновения в него производственных вредностей. Такую вентиляцию используют, например, в тамбур-шлюзах, отделяющих взрывоопасные производства от невзрывоопасных.

Приточные вентиляционные системы обычно состоят из воз-духозаборных устройств, устанавливаемых снаружи здания в тех местах, где воздух наименее загрязнен; устройств, предназначенных для придания воздуху необходимых качеств (фильтры, калориферы); воздуховодов для перемещения воздуха к месту назначения; возбудителей движения воздуха (вентиляторов, эжекторов); воздухораспределительных устройств, обеспечивающих подачу воздуха в нужное место с заданной скоростью и в требуемом количестве.

Вытяжные вентиляционные системы помимо воздуховодов по которым удаляемый воздух транспортируется из помещения к месту выброса, имеют различные по виду и форме местные укрытия, максимально сокращающие выделение вредностей в рабочее помещение; устройства для очистки удаляемого воздуха в тех случаях, когда воздух используется для рециркуляции или настолько загрязнен, что выброс его в атмосферу недопустим по санитарным требованиям. Устройства для выброса удаляемого из помещения воздуха в атмосферу должно быть расположено на 1-1,5 м выше конька крыши.

Место для забора свежего воздуха выбирают с учетом направления ветра, с наветренной стороны по отношению к выбросным отверстиям и на расстоянии не менее 8 м от них, вдали от мест загрязнений.

Воздух должен подаваться в рабочую зону на уровне дыхания (до 2 м) в месте наименьшего выделения вредностей. Вытяжные отверстия располагают возможно ближе к местам наибольшего выделения вредностей. Вытяжные вентиляционные камеры устраивают отдельно от приточных вентиляционных камер.

Местная вентиляция предназначена для улавливания вредностей у мест их выделения и предотвращения их перемешивания с воздухом помещения. Гигиеническое значение местной вентиляции заключается в том, что она полностью исключает или сокращает проникновение вредных выделений в зону дыхания работающего. Местная вытяжная вентиляция удаляет вредные выделения непосредственно у мест их возникновения. Местная приточная вентиляция подает чистый охлажденный (нагретый) воздух в рабочую зону, создавая в ней благоприятную метеорологическую обстановку.

Различают три вида укрытий: полностью закрывающие источник выделения вредностей, находящиеся вне источника выделений (открытые отсосы) и передувки.

Укрытия,полностью закрывающие источники выделения вредностей наиболее эффективны, но не всегда применимы по условиям технологии. Для защиты работающих применяют капсулирование (оборудование полностью заключают в кожух - капсулу), аспирацию (вредные выделения удаляют из внутренних объемов технологического оборудования), вытяжные шкафы, зонты, укрытия витринного типа, кабины, камеры и т. д.

Аспирация широко применяется в химической промышленности для отвода вредных выделений от электролитических ванн, емкостей, промывных аппаратов, сушилок и др.

Вытяжной шкаф (рис. 9.4, а) представляет собой устройство большой емкости, внутри которого проводят работы с вредными веществами. Скорость движения воздуха, засасываемого в шкаф через рабочее отверстие, должна быть не менее 0,5-0,7 м/с при удалении паров и газов, обладающих малой токсичностью, и 1-1,5 м при удалении сильнодействующих вредных веществ (пары свинца, ртути, цианистые соединения и др.).

Вытяжные зонты (рис. 9.4, б) применяют для локализации вредных веществ при выделениях тепла, создающих устойчивый восходящий поток. Зонты делают открытыми со всех сторон или частично открытыми, а по форме сечения - прямоугольными или круглыми.

Бортовые отсосы применяют тогда, когда пространство над поверхностью выделения вредных веществ должно оставаться совершенно свободным, а выделения не нагреваются до такой степени, чтобы подниматься вверх. Такого рода отсосы применяют, например, в производстве синтетического волокна для удаления паров диметилформамида.

Воздушное душирование применяют в горячих цехах на рабочих местах. Воздушный душ представляет направленный на рабочего поток воздуха. Его действие основано на увеличении отдачи тепла человека при возрастании скорости обдувающего воздуха.

Воздушные завесы используют для ограничения поступления холодного воздуха в помещение через часто открываемые двери и ворота. Воздух подают через выпускные щели, максимально приближенные к плоскости проёма. Завеса может быть и воздушно-тепловой, если воздух перед подачей нагреть.

Допускается рассчитывать количество вентиляционного воздуха по кратностям воздухообмена, установленным ведомственными норматив­ными документами.

Кратность воздухообмена К показывает, сколько раз в течение часа воздух в помещении должен быть заменен полностью.

где К- кратность воздухообмена, ч-1; V -объем воздуха для вентиляции помещения, м/ч; V п - объем помещения,м 3 .

Для большинства помещений химических производств при нормальном ведении технологического процесса К колеблется от 3 до 10 ч -1 .

Для механического перемещения воздуха, как в приточной, так и в вытяжной вентиляционных системах применяются вентиляторы (центробежные и осевые), реже - эжекторы. В зависимости от условий эксплуатации вентиляторы изготавливают из определенных материалов и различной конструкции (обычного исполнения, антикоррозионнго исполнения, взрывозащитного исполнения).

Если в удаляемых выбросах содержится очень агрессивная среда, например, пыль, способная взрываться не только от удара, но и от трения, а также присутствуют взрывоопасные газы и пары (ацетилен, эфир и др.), то сле­дует применить эжекторную вентиляцию, при которой пары, газы и пыль не соприкасаются с рабочим колесом - вентилятора (рис. 9.5). Воздух нагнетается в эжектор вентилятором высокого давления (или компрессором), установленным за пределами вентилируемого помещения, и в камере 2 в результате эжекции создается разрежение, под воздействием которого воз­дух засасывается из вентилируемого помещения.

Аварийная вентиляция представляет собой самостоятельную вентиляционную установку и имеет большое значение для обеспечения безопасности эксплуатации взрыво- и пожароопасных производств и производств, связанных с использованием вредных веществ. Для автоматического включения аварийную вентиляцию блокируют с автоматическими газоанализаторами, установленными либо на величину ПДК (вредное вещество) либо на величину НКПВ (взрывоопасные смеси). Кроме того, должен быть предусмотрен дистанционный пуск пусковыми устройствами, расположенными у входных дверей снаружи помещения.

Аварийную вентиляцию всегда устраивают только вытяжной, чтобы предотвратить переток вредных веществ в соседние помещения. Кратность вытяжки определяется отраслевыми правилами техники безопасности и промышленной санитарии.

Если в ведомственных нормативных документах отсутствуют указания о воздухообмене аварийной вентиляции, то следует помнить, что аварийная вентиляция вместе с постоянно действующей вентиляцией должна обеспечивать кратность воздухообмена в помещении не менее восьми. Такой воздухообмен рекомендован нормами и является минимальным.

Следует учитывать, что несмотря на большое значение вентиляции как фактора оздоровления условий труда, ее возможности не безграничны и необходимо наряду с вентиляцией использовать меры технического порядка, уменьшающие выделение вредностей и явного тепла.

Кондиционирование воздуха . Обычные системы вентиляции не способны поддерживать сразу все параметры воздуха в пределах, обеспечивающих комфортные условия в зонах пребывания людей. Эту задачу может выполнить кондиционирование, которое является наиболее совершенным видом механической вентиляции и автоматически поддерживает оптимальный микроклимат на рабочем месте независимо от наружных условий. В общем случае под кондиционированием подразумевается нагревание или охлаждение, увлажнение или осушка воздуха и очистка его от пыли. В некоторых случаях необходимо кроме того ионизировать воздух, исключить неприятные запахи, или придать приятные для обоняния человека запахи. Различают системы комфортного кондиционирования, обеспечивающие в помещении постоянные комфортные условия для человека, и системы технологического кондиционирования, предназначенные для поддержания в производственном помещении требуемых технологическим процессом условий. Для этого используют различные типы кондиционеров.

Кондиционирование воздуха требует по сравнению с вентиляцией больших затрат, но эти затраты быстро окупаются, так как повышается производительность труда, люди меньше болеют и т. д.

Для создания оптимального производственного микроклимата осуществляется с использованием технологических, санитарно-технических и медико-профилактических мероприятий. В профилактике вредного влияния высоких температур инфракрасного излучения ведущая роль принадлежит технологическим мероприятиям: замена старых и внедрение новых технологических процессов и оборудования, автоматизация и механизация процессов, дистанционное управление.

К группе санитарно-технических мероприятий относятся средства локализации тепловыделений и теплоизоляции, направленные на снижение интенсивности теплового излучения и тепловыделений от оборудования. Эффективными средствами снижения тепловыделений являются покрытие нагревающихся поверхностей и парогазотрубопроводов теплоизоляционными материалами (стекловата, асбестовая мастика, асботермит и др.); герметизация оборудования; применение отражательных, теплопоглотительных и теплоотводящих экранов; устройство вентиляционных систем; использование индивидуальных средств защиты.

К медико-профилактическим мероприятиям относятся: организация рационального режима труда и отдыха; обеспечение питьевого режима; повышение устойчивости к высоким температурам путем использования фармакологических средств (прием дибазола, аскорбиновой кислоты, глюкозы), вдыхания кислорода; прохождение предварительных при поступлении на работу и периодических медицинских осмотров .

Мероприятия по профилактике неблагоприятного воздействия холода должны предусматривать задержку тепла - предупреждение выхолаживания производственных помещений, подбор рациональных режимов труда и отдыха, использование средств индивидуальной защиты, а также мероприятия по повышению защитных сил организма. Для работающих длительное время на холоде людей предусмотрены социально оборудованные помещения для периодического отогрева. Источники повышенного влаговыделения с открытой поверхностью испарением (ванны, красильные и промывочные аппараты и другие емкости с водой и растворами) снабжают крышками или оборудуют местными отсосами.

Воздушное душирование применяют в горячих цехах на рабочих местах. Воздушный душ представляет собой направленный на рабочего поток воздуха, его действие основано на увеличении отдачи тепла человека при возрастании скорости обдувающего воздуха. Скорость обдува регламентирована СН 245-71 «Санитарные нормы проектирования промышленных предприятий» и составляет от 1 до 35 м/с в зависимости от интенсивности теплового облучения.

Воздушные занавесы используют для ограничения поступления холодного воздуха в помещение через часто открываемые двери и ворота. Воздух попадает через выпускные щели, максимально приближенные к плоскости проема. Завеса может быть и воздушно-тепловой, если воздух пред подачей нагревают.

Отопление. Система отопления может быть паровой, водяной, воздушной, совмещенной и кондиционированной.

Выбор системы отопления, а также допустимой температуры теплоносителя в системе отопления осуществляется в соответствии с категорией производства по взрывопожарной и пожарной опасности (СНиП 2.04.05-91 «Отопление, вентиляция, кондиционирование»).

Выбор системы отопления и параметров теплоносителя следует производить с учетом тепловой инерции ограждающих конструкций, характера и назначения зданий. При устройстве системы отопления потери теплоты должны составлять не более 10% от общего расхода ее на отопление.

Системы отопления должны: предусматривать равномерное нагревание воздуха помещения; быть безопасными в отношении взрыва и пожара и увязанными с системами вентиляции; обеспечивать уровень шума в пределах допустимых норм и минимально загрязнять вредными выделениями и неприятными запахами воздух помещений; быть удобными в эксплуатации и ремонте.

Температура теплоносителя в помещениях, относящихся к производствам категорий А, Б и В, не должна превышать 80% от предельной температуры самовоспламенения газов. Паров пыли, если возможно соприкосновение с горячими поверхностями оборудования и трубопроводов систем отопления, размещенными внутри рабочих помещений.

Вентиляция. Вентиляция - это организованный воздухообмен, регламентируемый СНиП 41-01-2003 (СНиП - Строительные нормы и правила) «Вентиляция. Отопление и кондиционирование» и ГОСТ 12.021-75 «Системы вентиляционные. Общие требования» .

Обеспечение нормальных метеорологических условий и чистоты воздуха на рабочих местах в значительной степени зависит от правильно организованной системы вентиляции .

Общие требования к системам вентиляции, кондиционирования воздуха и воздушного отопления производственных зданий и сооружений определены в СНиП 2.04.05 «Отопление, вентиляция, кондиционирование». Основное требование состоит в том, чтобы вентиляционные системы обеспечивали на рабочих местах, в производственной и обслуживаемых зонах помещений метеорологические условия и чистоту воздушной среды, соответствующие действующим санитарным нормам. Технические решения при проектировании вентиляционных систем, а так же требования, предъявляемые к ним при сооружении и эксплуатации, должны соответствовать строительным нормам и правилам.

По способу организации воздухообмена системы вентиляция разделяются на общеобменные, местные и комбинированные.

В общеобменных системах вентиляции смена воздуха происходит во всем объеме помещения, и их в основном применяют в производственных помещениях с небольшим и равномерным выделением вредных веществ.

Местные системы вентиляции предназначены для удаления вредных выделений (газов, паров, пыли, избыточной теплоты) в местах их непосредственного образования с последующим удалением из помещения. На устройство и эксплуатацию местной вентиляции требуется значительно меньше затрат.

Комбинированная вентиляция предусматривает одновременную работу местной и общеобменной систем.

В зависимости от способа перемещения воздуха вентиляция может быть естественной и механической. При естественной вентиляции воздух перемешается под влиянием естественных факторов - теплового напора или действия ветра. При механической вентиляции воздух направляют с помощью вентиляторов, эжекторов и т.д. сочетание естественной и искусственной вентиляции образует смешанную систему вентиляции.

Во всех помещениях должна быть естественная вентиляция. Естественное движение воздуха в помещении происходит вследствие перепада его плотности вне и внутри помещения (тепловое давление), а также перепада давления наружного воздуха с наветренной и подветренной сторон здания.

Рис. 1. Схема естественной вентиляции

Естественная вентиляция не требует значительных затрат, так как большие объемы воздуха поступают и удаляются из помещения без применения вентиляторов и воздухоотводов. Вентиляция происходит через вытяжные каналы, шахты, форточки и фрамуги зданий .