Основные формулы по физике - колебания и волны. Механические колебания и волны Что изучает раздел физики колебания и волны

Колебательным движением называется всякое движение или изменение состояния, характеризуемое той или иной степенью повторяемости во времени значений физических величин, определяющих это движение или состояние. Колебания свойственны всем явлениям природы: пульсирует излучение звезд; с высокой степенью периодичности вращаются планеты Солнечной системы; ветры возбуждают колебания и волны на поверхности воды; внутри любого живого организма непрерывно происходят разнообразные, ритмично повторяющиеся процессы, например, с удивительной надежностью бьется человеческое сердце.

В физике выделяются колебания механические и электромагнитные. С помощью распространяющихся механических колебаний плотности и давления воздуха, воспринимаемых нами как звук, а также очень быстрых колебаний электрических и магнитных полей, воспринимаемых нами как свет, мы получаем большое число прямой информации об окружающем мире. Примерами колебательного движения в механике могут быть колебания маятников, струн, мостов и т.д.

Колебания называются периодическими , если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени. Простейшим типом периодических колебаний являются гармонические колебания. Гармоническими называются колебания, при которых изменение колеблющейся величины со временем происходит по закону синуса (или косинуса):

где x – смещение от положение равновесия;

А – амплитуда колебания – максимальное смещение от положения равновесия;

- циклическая частота;

- начальная фаза колебания;

- фаза колебания; она определяет смещение в любой момент времени, т.е. определяет состояние колебательной системы.

В случае строго гармонических колебаний величины А, ине зависят от времени.

Циклическая частота связана с периодом Т колебаний и частотойсоотношением:

(2)

Периодом Т колебаний называется наименьший промежуток времени, по истечении которого повторяются значения всех физических величин, характеризующих колебания.

Частотой колебаний называется число полных колебаний, совершаемых за единицу времени, измеряется в герцах (1 Гц = 1
).

Циклическая частота численно равна числу колебаний, совершаемых за 2 секунд.

Колебания, возникающее в системе, не подверженной действию переменных внешних сил, в результате какого-либо начального отклонения этой системы от состояния устойчивого равновесия, называются свободными (или собственными).

Если система консервативная, то при колебаниях не происходит рассеяния энергии. В этом случае свободные колебания называются незатухающими .

Скорость колебания точки определим как производную от смещения по времени:

(3)

Ускорение колеблющейся точки равно производной от скорости по времени:

(4)

Уравнение (4) показывает, что ускорение при гармонических колебаниях – переменно, следовательно, колебание обусловлено действием переменной силы.

Второй закон Ньютона позволяет в общем виде записать связь между силой F и ускорением при прямолинейных гармонических колебаниях материальной точки с массой
:

где
, (6)

к – коэффициент упругости.

Таким образом, сила, вызывающая гармонические колебания, пропорциональна смещению и направлена против смещения. В связи с этим можно дать динамическое определение гармонического колебания: гармоническим называется колебание, вызываемое силой, прямо пропорциональной смещению х и направленной против смещения.

Возвращающей силой может быть, например, сила упругости. Силы, имеющие иную природу, чем упругие силы, но также удовлетворяющие условию (5), называются квазиупругими .

В случае прямолинейных колебаний вдоль оси х ускорение равно:

.

Подставив это выражение для ускорения и значение силы
во второй закон Ньютона, получимосновное уравнение прямолинейных гармонических колебиний:


или
(7)

Решением этого уравнения является уравнение (1).

Основные положения :

Колебательное движение – движение, точно или приблизительно повторяющееся через одинаковые промежутки времени.

Колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса, являются гармоническими.

Периодом колебаний Т называется наименьший промежуток времени, по истечение которого повторяются значения всех величин, характеризующих колебательное движение. За этот промежуток времени совершается одно полное колебание.

Частотой периодических колебаний называется число полных колебаний, которые совершаются за единицу времени. .

Циклической (круговой) частотой колебаний называется число полных колебаний, которые совершаются за 2π единиц времени.

Гармоническими колебаниями называются колебания, при которых колеблющаяся величина х изменяется с течением времени по закону:

где А, ω, φ 0 – постоянные величины.

А > 0 – величина, равная наибольшему абсолютному значению колеблющейся величины х и называется амплитудой колебаний.

Выражение определяет значение х в данный момент времени и называется фазой колебаний.

В момент начала отсчета времени (t = 0) фаза колебаний равна начальной фазе φ 0.

Математический маятник – это идеализированная система, представляющая собой материальную точку, подвешенную на тонкой, невесомой и нерастяжимой нити.

Период свободных колебаний математического маятника: .

Пружинный маятник – материальная точка, закрепленная на пружине и способная совершать колебания под действием силы упругости.

Период свободных колебаний пружинного маятника: .

Физический маятник – это твердое тело, способное вращаться вокруг горизонтальной оси под действием силы тяжести.

Период колебаний физического маятника: .

Теорема Фурье : любой реальный периодический сигнал можно представить в виде суммы гармонических колебаний с различными амплитудами и частотами. Эту сумму называют гармоническим спектром данного сигнала.

Вынужденными называют колебания, которые вызваны действием на систему внешних сил F(t), периодически изменяющихся с течением времени.

Сила F(t) называется возмущающей силой.

Затухающими колебаниями называются колебания, энергия которых уменьшается с течением времени, что связано с убылью механической энергии колеблющейся системы за счет действия сил трения и других сил сопротивления.

Если частота колебаний системы совпадает с частотой возмущающей силы, то резко возрастает амплитуда колебаний системы. Это явление называется резонансом.

Распространение колебаний в среде называется волновым процессом, или волной.

Волна называется поперечной , если частицы среды колеблются в направлении, перпендикулярном направлению распространения волны.


Волна называетсяпродольной , если колеблющиеся частицы движутся в направлении распространения волны. Продольные волны распространяются в любой среде (твердой, жидкой, газообразной).

Распространение поперечных волн возможно только в твердых телах. В газах и жидкостях, которые не обладают упругостью формы, распространение поперечных волн невозможно.

Длиной волны называется расстояние между ближайшими точками, колеблющимися в одинаковой фазе, т.е. расстояние, на которое распространяется волна за один период.

Скорость волны V – это скорость распространения колебаний в среде.

Период и частота волны – период и частота колебаний частиц среды.

Длина волны λ – расстояние, на которое распространяется волна за один период: .

Звук – упругая продольная волна, распространяющаяся от источника звука в среде.

Восприятие звуковых волн человеком зависит от частоты, слышимые звуки от 16 Гц до 20000Гц.

Звук в воздухе – это продольная волна.

Высота тона определяется частотой звуковых колебаний, громкость звука – его амплитудой.

Контрольные вопросы :

1. Какое движение называется гармоническим колебанием?

2. Дайте определения величин, характеризующих гармонические колебания.

3. Каков физический смысл имеет фаза колебаний?

4. Что называется математическим маятником? Каков его период?

5. Что называется физическим маятником?

6. Что такое резонанс?

7. Что называется волной? Дайте определение поперечной и продольной волны.

8. Что называется длиной волны?

9. Каков диапазон частот звуковых волн? Может ли звук распространяться в вакууме?

Выполните задания:

Механические колебания .

Амплитуда, циклическая частота, фаза гармонических колебаний. Гармонический осциллятор. Пружинный маятник. Физический маятник. Математический маятник. Сложение колебаний. Затухающие колебания. Декремент колебания. Добротность колебательной системы. Вынужденные колебания под действием синусоидальной силы. Резонанс. Резонансные кривые.

Электромагнитные колебания .

Колебательный контур. Формула Томсона. Переменный ток. Дифференциальное уравнение затухающих колебаний и его решение. Коэффициент затухания, логарифмический декремент. Добротность. Дифференциальное уравнение вынужденных колебаний и его решение. Резонанс. Амплитуда и фаза при вынужденных колебаниях.

Волны .

Волновые процессы. Продольные поперечные волны. Длина волны, волновое число, фазовая скорость. Фронт волны. Волновая поверхность. Плоская волна. Бегущая волна. Сферическая волна. Стоячие волны. Электромагнитные волны. Волновое уравнение. Скорость распространения электромагнитных волн. Поляризация волн.

Оптика

Геометрическая оптика.

Элементы геометрической оптики. Законы геометрической оптики. Явление полного отражения. Линза. Формула тонкой линзы.

Волновая оптика.

Свет как электромагнитная волна. Когерентность и монохроматичность световых волн. Интерференционное поле от двух точечных источников. Опыт Юнга. Интерферометр Майкельсона. Интерференция в тонких пленках. Многолучевая интерференция.

Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля. Дифракция на одной щели. Дифракционная решетка. Дифракция Фраунгофера. Понятие о голографии. Распространение света в веществе. Дисперсия света. Поляризация света. Естественный и поляризованный свет. Поляризация света при его отражении и преломлении. Закон Брюстера. Двойное лучепреломление.

Квантовая физика

Физика атома, атомного ядра и элементарных частиц

Квантовая природа излучения .

Тепловое излучение и его характеристики. Законы Кирхгофа. Законы Стефана-Больцмана и смещения Вина. Формулы Рэлея-Джинса и Планка. Внешний фотоэффект. Уравнение Эйнштейна для внешнего фотоэффекта. Масса и импульс фотона. Давление света. Эффект Комптона. Диалектическое единство корпускулярных и волновых свойств электромагнитного излучения.



Физические модели атомов.

Модели атома Томсона и Резерфорда. Линейчатый спектр атома водорода. Эмпирические закономерности в атомных спектрах. Формула Бальмера.

Теория атома водорода по Бору. Постулаты Бора. Теория водородоподобного атома.

Квантовая природа вещества.

Элементы квантовой механики. Корпускулярно-волновой дуализм свойств вещества. Гипотеза де Бройля. Опыты Дэвиссона и Джермера. Дифракция микрочастиц. Принцип неопределенности Гейзенберга. Волновая функция, ее статистический смысл и условия, которым она должна удовлетворять. Уравнение Шредингера. Квантовая частица в одномерной потенциальной яме. Одномерный потенциальный порог и барьер. Линейный гармонический осциллятор в квантовой механике.

Физика атомов и молекул.

Элементы современной физики атомов и молекул. Стационарное уравнение Шредингера для атома водорода. Волновые функции и квантовые числа. Правила отбора для квантовых переходов. Опыт Штерна и Герлаха. Эффект Зеемана.

Принцип Паули. Молекулярные спектры.

Оптические квантовые генераторы

Спонтанное и индуцированное излучение. Инверсное заселение уровней активной среды. Основные компоненты лазера. Условие усиления и генерации света. Особенности лазерного излучения. Основные типы лазеров и их применение.

Физика атомного ядра и элементарных частиц.

Строение и свойства атомных ядер. Состав ядра. Изотопы. Масса и энергия связи в ядре. Радиоактивность. Ядерные реакции. Явление радиоактивности. Закон радиоактивного распада. Период полураспада. Понятие о ядерных реакциях. Законы сохранения в ядерных реакциях.

Современная физическая картина мира.

Иерархия строения материи. Эволюция Вселенной. Физическая картина мира как философская категория.

ПРИМЕРЫ ОФОРМЛЕНИЯ КОНТРОЛЬНЫХ РАБОТ

ВАРИАНТ 1

Задача №1

В подвешенный на нити длиной м деревянный шар массой кг попадает горизонтально летящая пуля массой г. С какой скоростью летела пуля, если нить с шаром и застрявшей в ней пулей отклонилась от вертикали на угол ? Размером шара пренебречь. Удар пули считать прямым центральным.

столкновения как движение материальной точки с массой .


Запишем закон сохранения импульса для системы тел и :

где – общая скорость шара и пули после неупругого удара.

В проекции на ось x имеем:

Уравнение (1) позволяет выразить искомую величину через , которая в свою очередь может быть найдена на основании закона сохранения энергии в применении к системе после ее формирования, т.е. после неупругого столкновения.

Итак, из уравнения (1) имеем:

(2)

Запишем закон сохранения энергии для системы тел после неупругого соударения (полная механическая энергия остается величиной постоянной):

Величина может быть найдена из геометрических соображений:

Подставляя (3) в (2), получаем

.

Проверка размерности:

м/с.

Выполняем расчет:

Ответ: м/с.

Задача №2

Смесь водорода и азота общей массой г при температуре T = 600 К и давлении p = 2,46 МПа занимает объем V = 30 л. Определить массу m 1 водорода и массу m 2 азота.

Для определения парциального давления запишем уравнение Менделеева – Клапейрона для каждого компонента:

, (2)

, (3)

где индексом “1” отмечены характеристики, относящиеся к водороду, а индексом “2” – к азоту. Выразим и из уравнений (2) и (3) и подставим в закон Дальтона (1):

; (4)

при этом . (5)

Из (4) и (5) следует

. (6)

Из (6) получаем

. (7)

Проверка размерности:

.

Ответ: = 0,01 кг, = 0,28 кг.

Задача №3

Две –частицы, находясь первоначально достаточно далеко друг от друга, движутся по одной прямой навстречу одна другой со скоростями и 2 соответственно. На какое наименьшее расстояние они могут сблизиться?

противоположны по направлению и равны по модулю . В подобной ситуации (точнее, в этой системе отсчета) частицы в момент наибольшего сближения останавливаются и при этом их кинетическая энергия полностью переходит в потенциальную энергию электростатического взаимодействия.


На основании закона сохранения энергии

.

,

где – электрическая постоянная.

Проверка размерности:

.

Ответ: .

Задача №4

Тонкий провод в виде кольца массой г свободно подвешен на неупругой нити в однородном магнитном поле. По кольцу течет ток силой i =6 А. Период Т малых крутильных колебаний относительно вертикальной оси равен 2,2 с. Найти индукцию В магнитного поля.

Если же вектор магнитного момента не совпадает с вектором , то на контур действует возвращающий механический момент под действием которого контур будет совершать колебательные движения. (Здесь S – площадь, ограниченная контуром).

Запишем уравнение движения кругового контура для случая малых колебаний:

где – момент инерции кольца относительности оси, лежащей в плоскости кольца и проходящей через его центр; – угловое ускорение, N - возвращающий механический момент, равный (при малых углах ); . Тогда уравнение (1) примет вид:

;

;

Таким образом, мы получаем уравнение гармонических колебаний кольца для которых циклическая частота .

Учитывая связь периода колебаний и частоты, имеем:

.

следовательно,

Проверка размерности:

.

(Tл)

Ответ: .

Задача №5

На дифракционную решетку нормально к ее поверхности падает монохроматический свет. Постоянная дифракционной решетки в n = 4,6 раза больше длины световой волны. Найти общее число m дифракционных максимумов, которое теоретически возможно наблюдать в данном случае.

Для решения задачи воспользуемся условием максимума дифракционной решетки. Разность хода лучей от соседних щелей должна быть равна целому числу длин волн.

, (1)

где k – порядок максимума.

Модуль не может превысить единицу.

Поэтому из формулы (1) вытекает, что наибольший порядок наблюдаемого максимума k max должен быть меньше отношения периода решетки d к длине волны λ

k max < ;L , где (скорости света). При напряжениях порядка В необходимо перейти к соотношениям релятивистской динамики:

и проводить анализ решения на основе этого соотношения.

Ответ: = 0,7 см.

Используемая литература:

1. Савельев, И.В. Курс общей физики: В 3 т. [Текст]: Учебное пособие / И. В. Савельев.– Изд.5-е, стереотип. – СПб.: Изд-во “Лань”, 2006, Т.1- 496 с. – (Механика, колебания и волны, молекулярная физика).

2. Савельев, И.В. Курс общей физики: В 3 т. [Текст]: Учебное пособие / И. В. Савельев.– Изд.5-е, стереотип. – СПб.: Изд-во “Лань”, 2006, Т.2. - 496 с.- (Электричество и магнетизм. Волны. Оптика).

3. Савельев, И.В. Курс общей физики: В 3 [Текст]: Учебное пособие / И. В. Савельев. – Изд.5-е, стереотип. – СПб.: Изд-во “Лань”, 2006,т. - 2-е изд., испр. - М.: Наука, 1982. Т.3 - 304 с. (Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц)

4. Пиралишвили,Ш.А. Механика. Электромагнетизм. - [Текст]/ Ш.А.Пиралишвили, Н.А.Мочалова, З.В.Суворова, Е.В.Шалагина, В.В.Шувалов. –М.: Машиностроение, 2006. -336с.

5. Пиралишвили, Ш.А. Колебания. Волны. Геометрическая и волновая оптика. Квантовая и ядерная физика. .- [Текст]/ Ш.А.Пиралишвили, Н.А.Мочалова, З.В.Суворова, Е.В.Шалагина, В.В.Шувалов. –М.: Машиностроение-1, 2007. -341с.

6. Пиралишвили, Ш.А.Термодинамика и молекулярная физика. Элементы статистической физики. Элементы физики конденсированного состояния. - [Текст]/ Ш.А.Пиралишвили, Н.А.Каляева, З.В.Суворова, Е.В.Шалагина, В.В.Шувалов. –М.: Машиностроение-1, 2008. -348с.

100. Колебательным процессом (колебанием) называется такое изменение состояния системы, при котором значения параметров состояния последовательно отклоняются то в одну, то в другую сторону от некоторого значения.

101. Свободные колебания - это колебания, которые совершаются под действием внутренних сил, пропорциональных смещению и направленных к положению равновесия. Они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему.

102. Гармоническими называются колебания, при которых величины, описывающие систему, изменяются по закону синуса или косинуса. Этими величинами могут быть: координата точки, энергия, напряжённость электрического поля, индукция магнитного поля, скорость и т.д.

103. Уравнение гармонических колебаний:

где х - значение изменяющейся величины в данный момент времени, х m - амплитуда колебаний, ‑ циклическая частота, 0 - начальная фаза.

104. Амплитуда колебаний - это модуль максимального отклонения изменяющейся величина от положения равновесия.

105. Частота - это число колебаний за единицу времени (обычно за секунду). В системе СИ частота измеряется в герцах (Гц).

106. Циклическая частота - это число колебаний за 2 секунд. В системе СИ циклическая частота измеряется в с -1 .

107. Период колебаний T - это время, за которое совершается одно полное колебание. В системе СИ период измеряется в секундах (с).

108. Связь периода, частоты и циклической частоты колебаний

109. Значение выражения (t + 0), стоящего под знаком косинуса или синуса в уравнении гармонических колебаний и определяющего при постоянной амплитуде состояние колебательной системы в данный момент времени, называется фазой колебаний. Фаза колебаний в системе СИ измеряется в радианах (рад).

110. Скорость колеблющейся точки

111. Максимальная скорость колеблющейся точки:

112. Ускорение колеблющейся точки

113. Максимальное ускорение колеблющейся точки

114. Сила, действующая на колеблющуюся материальную точку

115. Полная энергия материальной точки , совершающей гармонические колебания

116. Математическим маятником называется материальная точка, подвешенная на длинной, невесомой и нерастяжимой нити. При выведении из положения равновесия такая система совершает колебания под действием силы тяжести.

117. Период колебаний математического маятника равен

где l -длина математического маятника, g - ускорение свободного падения.

118. Период колебаний пружинного маятника:

где m - масса маятника, k - коэффициент упругости пружины.

119. Затухающими называются колебания, амплитуда которых уменьшается с течением времени.

120. Вынужденными называются колебания, которые происходят под влиянием внешних периодических воздействий. Вынужденные колебания происходят с частотой внешних периодических воздействий.

121. Автоколебания - это незатухающие колебания, существующие за счёт постоянного источника энергии, который периодически включается и выключается самой колебательной системой в нужные моменты времени для пополнения запаса энергии.

122. Резонанс - это явление резкого возрастания амплитуды вынужденных колебаний, когда частота внешних периодических воздействий совпадает с частотой собственных колебаний колебательной системы.

123. Волна - это процесс распространения колебаний в материальной среде.

124. Фронт волны - это поверхность, которая отделяет область пространства, уже вовлечённую в волновой процесс, от области пространства, в которой колебания ещё не возникли.

125. Волновой поверхностью называется геометрическое место точек, колеблющихся в одинаковой фазе.

126. Волны называют поперечными , если колебания в них происходят перпендикулярно направлению распространения волны.

127. Волны называют продольными , если колебания в них происходят вдоль направления их распространения.

128. Поперечные волны распространяются только в твёрдых телах и вдоль границ раздела сред с различными физическими свойствами, например, на границе между водой и воздухом (на поверхности воды), т.к. за механизм их возникновения ответственна деформация сдвига, которая возможна только в твёрдых телах или на границе раздела сред, обладающей упруги­ми свойствами. Примером поперечных волн могут служить электромагнитные волны, волны на поверхности воды.

129. Продольные волны могут существовать в любых средах, т.к. за меха­низм их возникновения ответственна деформация растяжения-сжатия, кото­рая может возникать в любых средах. Примером продольных волн могут служить звуковые волны в воздухе.

130. Расстояние, на которое распространяется волна за один период называется длиной волны . Или другое определение: кратчайшее расстояние между точками, колеблющимися в одинаковой фазе, называется длиной волны .

131. Волны, частота которых лежит в диапазоне от 16 Гц до 20 кГц, называются звуковыми или акустическими.

132. Скорость звука в воздухе порядка 340 м/с. Она изменяется в зависимости от температуры, плотности, влажности, атмосферного давления. Чем выше плотность среды, тем больше скорость звука. Например, в твёрдых телах она составляет тысячи м/с.

133. Громкость звука зависит от амплитуды колебаний частиц в волне. Чем больше амплитуда колебаний, тем выше громкость звука.

134. Высота тона зависит от частоты. Чем выше частота, тем выше тон.

135. Принцип суперпозиции волн: при распространении в среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частиц среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов.

136. Когерентность - согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.

137. Когерентные волны - это волны одинаковой частоты, разность фаз которых в процессе распространения остается постоянной во времени.

138. Интерференция волн - сложение когерентных волн, при котором в разных точках пространства получается устойчивая картина усиления или ослабления амплитуды результирующей волны.

139. Условия интерференционных максимумов: разность хода волн равна чётному числу длин полуволн или целому числу длин волн.

140. Условия интерференционных минимумов: разность хода волн равна нечётному числу длин полуволн.

где r - разность хода волн, - длина волны, k = 0,1,2,...

141. Разность фаз двух когерентных волн в данной точке

где r 1 и r 2 – расстояния точки от источников когерентных волн; r 2 -r 1 =r - разность хода волн.

142. Инфразвук - волны с частотами меньше 16 Гц.

143. Ультразвук - волны с частотами больше 20 кГц.

144. Интенсивность звука - величина, определяемая средней по времени энергией, переносимой звуковой волной за 1 с через площадку 1 м 2 , перпендикулярную направлению распространению волны.

Период.

Периодом T называется промежуток времени, в течение которого система совершает одно полное колебание:

N - число полных колебаний за время t .

Частота.

Частота ν - число колебаний в единицу времени:

Единица частоты - 1 герц (Гц) = 1 с -1

Циклическая частота:

Уравнение гармонического колебания:

x - смещение тела от положения. X m - амплитуда, то есть максимальное смещение, (ωt + φ 0) - фаза колебаний, Ψ 0 - его начальная фаза.

Скорость.

При φ 0 = 0:

Ускорение.

При φ 0 = 0:

Свободные колебания.

Свободными называются колебания, возникающие в механической системе (осцилляторе) при единичном отклонении её от положения равновесия, имеющие собственную частоту ω 0 , задаваемую только параметрами системы, и затухающие со временем из-за наличия трения.

Математический маятник.

Частота:

l - длина маятника, g - ускорение свободного падения.

Максимальную кинетическую энергию маятник имеет в момент прохождения положения равновесия:

Пружинный маятник.

Частота:

k - жёсткость пружины, m - масса груза.

Максимальную потенциальную энергию маятник имеет при максимальном смещении:

Вынужденные колебания.

Вынужденными называют колебания, возникающие в колебательной системе (осцилляторе) под действием периодически меняющейся внешней силы.

Резонанс.

Резонанс - резкое увеличение амплитуды X m вынужденных колебаний при совпадении частоты ω вынуждающей силы с частотой ω 0 собственных колебаний системы.

Волны.

Волны - это колебания вещества (механические) или поля (электромагнитные), распространяющиеся в пространстве с течением времени.

Скорость волны.

Скорость распространения волны υ - скорость передачи энергии колебания. При этом частицы среды колеблются около положения равновесия, а не движутся с волной.

Длина волны.

Длина волны λ - расстояние, на которое распространяется колебание за один период:

Единица длины волны - 1 метр (м).

Частота волны:

Единица частоты волны - 1 герц(Гц).