План урока по теме решение тригонометрических неравенств. Конспект урока на тему «Решение простейших тригонометрических неравенств. Решение тригонометрических уравнений


Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Решение тригонометрических неравенств методом интервалов 10 А класс Учитель: Ускова Н.Н. МБОУ Лицей №60 Цели урока: Образовательные: расширение и углубление знаний по теме “Метод интервалов”; обретение практических навыков выполнения заданий, используя метод интервалов;повышение уровня математической подготовки школьников;Развивающие:развитие навыков исследовательской деятельности;Воспитательные:формирование наблюдательности, самостоятельности, способности к взаимодействию с другими людьмивоспитание культуры мышления, культуры речи, интереса к учебному предмету. Ход урока Проверка домашнего задания.Самостоятельная работа.Объяснение нового материала по теме «Решение тригонометрических неравенств методом интервалов»:алгоритм решения;примеры неравенств.Итоги урока.Домашнее задание. Проверка домашнего задания Решите неравенства: Самостоятельная работа Дополнительно: 1) 2) Проверка домашнего задания Решите неравенства:а) Решение. Ответ: б) Решение. Ответ: в) Решение. Ответ: г) Решение. Ответ: . Решить неравенство Решение. Ответ: Пример 1. Решить неравенство методом интервалов Решение. 1) 2) Нули функции: 3) Знаки функции на интервалах: + - + - + 4) Так как неравенство нестрогое, то корни включаются 5) Решение: Ответ: Пример 2. Решить неравенство: Решение. Ответ: I способ: II способ: Ответ: Решение тригонометрических неравенств методом интервалов Алгоритм:С помощью тригонометрических формул разложить на множители.Найти точки разрыва и нули функции, поставить их на окружность.Взять любую точку x0 (но не найденную ранее) и выяснить знак произведения. Если произведение положительно, то поставить «+» за единичной окружностью на луче, соответствующему углу. Иначе поставить знак «-» внутри окружности.Если точка встречается четное число раз, назовем ее точкой четной кратности, если нечетное число раз – точкой нечетной кратности. Провести дуги следующим образом: начать с точки x0 , если следующая точка нечетной кратности, то дуга пересекает окружность в этой точке, если же точка четной кратности, то не пересекает.Дуги за окружностью – положительные промежутки; внутри окружности – отрицательные промежутки. Решение примеров 1) 2) 3) 4) 5) Пример 1. Решение. Точки первой серии: Точки второй серии: - - - + + + Ответ: Пример 2. Решение. Точки первой серии: Точки второй серии: Точки третей серии: Точки четвертой серии: Точки четной кратности: + + + + - - - - Ответ: Пример 3. Решение. Итого: Точки первой серии: Точки второй серии: Точки третей серии: + + + + + + - - - - - - - - Ответ. Точки четной кратности: Пример 4. Решение. + + + + - - - - Ответ. Пример 5. Решение. 1) 2) Нули функции: 3) + - - + - нулей нет Итак, при Ответ: Графически: Домашнее задание: Решить тригонометрические неравенства методом интервалов:а)б) в) г)д) е)ж) Дополнительные задания:


Приложенные файлы

Тема урока :

Задачи урока :

Тип урока : комбинированный.

Ход урока

1.Организационная часть

2.Проверка знаний:

3.Повторение.

4.Новая тема .

Решение простейших тригонометрических неравенств sin x < 0, sin x > 0

sin x ≤ 0, sin x ≥ 0

Учащимся предлагается воспользоваться карточкой № 1 (формат А-4) со следующим содержанием.

Карточка № 1.

Алгоритм решения тригонометрических неравенств.

На оси ординат единичной окружности отмечаем точку, соответствующую значению а (примерно).

Через полученную точку проводим прямую параллельно другой оси системы координат до пересечения с окружностью (Точки пересечения можно соединить с центром окружности).

На единичной окружности в точках пересечения записываем числа, соответствующие этим точкам.

Мысленно перемещаем нашу прямую параллельно оси координат в зависимости от значения а.

Выделяем штриховкой ту часть дуги единичной окружности, которую перемещающая прямая ее пересекает. Если неравенство строгое, то точки на концах дуги не заштриховываются (выколотые точки).

Записываем ответ.

Решение неравенства sinx>

Далее по алгоритму учитель на доске, а учащиеся на карточке проводят последовательные операции на единичных окружностях (рис. 1, а, б, в), рассматривая решение неравенства sin x >


Рис. 1

Записывается ответ:

Решение неравенства соsx>

Решение неравенства проводится одним из учащихся на доске. Учащиеся на карточке при максимальной самостоятельности, используя рисунок, записывают решение данного неравенства (Рис. 2, а ). При необходимости учитель оказывает помощь учащемуся у доски и учащимся класса. Закрепляется алгоритм решения неравенства.


Рис. 2

Ответ:

5. Закрепление.

Учащимся предлагается самостоятельно решить неравенство (Рис. 6, б )

Ответ:

6. Домашнее задание п.8.1, материал карточек.

7. Контроль и оценка работы. Итоги урока.

Повторить алгоритм решения тригонометрических неравенств на каком либо примере учебника § 8 п.8.1 (А.Н.Шыныбеков. Алгебра и начала математического анализа. Учебник для 10 класса общеобразовательной школы. Алматы «Атамура» 2012).

Учитель математики Лоренц Ольга Васильевна _________________________

Тема урока : Решение простейших тригонометрических неравенств.

Задачи урока : а)организовать работу по изучению способов решения тригонометрических неравенсв;

способствовать формированию умений и навыков решения простейших тригонометрических неравенств;

б)создать условия для развития памяти, внимания, техники счета, интуиции, речи, любознательности, самостоятельности логического мышления;

в)способствовать воспитанию тактичности, уважения к одноклассникам, силы воли, ответственного отношения к учебе, самодисциплины упорства.

Тип урока : комбинированный.

Ход урока

1.Организационная часть : деление учащихся класса на группы, распределение ролей в группах.

2.Проверка знаний:

Д/З устно: фронтальная проверка, объяснение решения заданий, вызвавших затруднения.

3.Повторение.

Для какой функции существует функция обратная? Приведите пример функции, для которой существует обратная функция на всей области определения, не существует обратной функции на всей области определения.

Какая существует зависимость между областью определения и областью значений прямой и обратной функций?

Как располагаются в прямоугольной системе координат графики прямой и обратной функций?

Можно ли говорить о том, что тригонометрические функции на всей области определения имеют обратные функции? Обоснуйте свой ответ.

4.Новая тема.

Учащиеся – лидеры групп подготавливают дома презентации по теме: «Решение простейших тригонометрических неравенств». Во время объяснения эти ученики объясняют новую тему с помощью своих птезентаций.

5.Закрепление. Самостоятельная работа в группах.

Cos X <-

( + 2 k; + 2 k), k

Sin X ≥

[ + 2 k, + 2 k], k

Sin X < -

(- ;- + 2 k) , k

Sin X < -

(- ;- + 2 k) , k

Sin X ≥

X + 2 n, + 2 k], n

На практическом занятии мы повторим основные типы заданий из темы «Тригонометрия» , дополнительно разберем задачи повышенной сложности и рассмотрим примеры решения различных тригонометрических неравенств и их систем .

Данный урок поможет Вам подготовиться к одному из типов заданий В5, В7, С1 и С3 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 11. Закрепление пройденного материала. Тригонометрические неравенства. Решение различных задач повышенной сложности

Практика

Конспект урока

Повторение тригонометрии

Начнем с повторения основных типов заданий, которые мы рассмотрели в теме «Тригонометрия» и решим несколько нестандартных задач.

Задача №1 . Выполнить перевод углов в радианы и градусы: а) ; б) .

а) Воспользуемся формулой перевода градусов в радианы

Подставим в нее указанное значение .

б) Применим формулу перевода радиан в градусы

Выполним подстановку .

Ответ. а) ; б) .

Задача №2 . Вычислить: а) ; б) .

а) Поскольку угол далеко выходит за рамки табличного, уменьшим его с помощью вычитания периода синуса. Т. к. угол указан в радианах, то и период будем рассматривать как .

б) В данном случае ситуация аналогичная. Поскольку угол указан в градусах, то и период тангенса будем рассматривать как .

Полученный угол хоть и меньше периода, но больше , а это значит, что он относится уже не к основной, а к расширенной части таблицы. Чтобы не тренировать лишний раз свою память запоминанием расширенной таблицы значений тригофункций, вычтем период тангенса еще раз:

Воспользовались нечетностью функции тангенс.

Ответ. а) 1; б) .

Задача №3 . Вычислить , если .

Приведем все выражение к тангенсам, разделив числитель и знаменатель дроби на . При этом, можем не бояться, что , т. к. в таком случае значения тангенса не существовало бы.

Задача №4 . Упростить выражение .

Указанные выражения преобразовываются с помощью формул приведения. Просто они непривычно записаны с использованием градусов. Первое выражение вообще представляет собой число. Упростим все тригофункции по очереди:

Т. к. , то функция меняется на кофункцию, т. е. на котангенс, и угол попадает во вторую четверть, в которой у исходного тангенса знак отрицательный.

По тем же причинам, что и предыдущем выражении, функция меняется на кофункцию, т. е. на котангенс, а угол попадает в первую четверть, в которой у исходного тангенса знак положительный.

Подставим все в упрощаемое выражение:

Задача №5 . Упростить выражение .

Распишем тангенс двойного угла по соответствующей формуле и упростим выражение:

Последнее тождество является одной из формул универсальной замены для косинуса.

Задача №6 . Вычислить .

Главное, это не сделать стандартной ошибки и не дать ответ, что выражение равно . Воспользоваться основным свойством арктангенса нельзя пока возле него присутствует множитель в виде двойки. Чтобы от него избавиться распишем выражение по формуле тангенса двойного угла , при этом относимся к , как к обыкновенному аргументу.

Теперь уже можно применять основное свойство арктангенса, вспомним, что на его численный результат ограничений нет.

Задача №7 . Решить уравнение .

При решении дробного уравнения, которое приравнивается к нулю, всегда указывается, что числитель равен нулю, а знаменатель нет, т. к. на ноль делить нельзя.

Первое уравнение представляет собой частный случай простейшего уравнения, которое решается с помощью тригонометрической окружности. Вспомните самостоятельно этот способ решения. Второе неравенство решается как простейшее уравнение по общей формуле корней тангенса, но только с записью знака неравно.

Как видим, одно семейство корней исключает другое точно такое же по виду семейство не удовлетворяющих уравнению корней. Т. е. корней нет.

Ответ. Корней нет.

Задача №8 . Решить уравнение .

Сразу заметим, что можно вынести общий множитель и проделаем это:

Уравнение свелось к одной из стандартных форм, когда произведение нескольких множителей равно нулю. Мы уже знаем, что в таком случае или один из них равен нулю или другой, или третий. Запишем это в виде совокупности уравнений:

Первые два уравнения являются частными случаями простейших, с подобными уравнениями мы уже многократно встречались, поэтому сразу укажем их решения. Третье уравнение приведем к одной функции с помощью формулы синуса двойного угла.

Решим отдельно последнее уравнение:

Данное уравнение не имеет корней, т. к. значение синуса не могут выходить за пределы .

Таким образом, решением является только два первых семейства корней, их можно объединить в одно, что легко показать на тригонометрической окружности:

Это семейство всех половин , т. е.

Тригонометрические неравенства

Перейдем к решению тригонометрических неравенств. Сначала разберем подход к решению примера без использования формул общих решений, а с помощью тригонометрической окружности.

Задача №9 . Решить неравенство .

Изобразим на тригонометрической окружности вспомогательную линию, соответствующую значению синуса равному , и покажем промежуток углов, удовлетворяющих неравенству.

Очень важно понять, как именно указывать полученный промежуток углов, т. е. что является его началом, а что концом. Началом промежутка будет угол, соответствующей точке, в которую мы войдем в самом начале промежутка, если будем двигаться против часовой стрелки. В нашем случае это точка, которая находится слева, т. к. двигаясь против часовой стрелки и проходя правую точку, мы наоборот выходим из необходимого промежутка углов. Правая точка будет, следовательно, соответствовать концу промежутка.

Теперь необходимо понять значения углов начала и конца нашего промежутка решений неравенства. Типичная ошибка - это указать сразу, что правой точке соответствует угол , левой и дать ответ . Это неверно! Обратите внимание, что мы только что указали промежуток, соответствующий верхней части окружности, хотя нас интересует нижняя, иными словами, мы перепутали начало и конец необходимого нам интервала решений.

Чтобы интервал начинался с угла правой точки, а заканчивался углом левой точки, необходимо, чтобы первый указанный угол был меньше второго. Для этого угол правой точки нам придется отмерять в отрицательном направлении отсчета, т. е. по часовой стрелке и он будет равен . Тогда, начиная движение с него в положительном направлении по часовой стрелке, мы попадем в правую точку уже после левой точки и получим для нее значение угла . Теперь начало промежутка углов меньше конца , и мы можем записать промежуток решений без учета периода:

Учитывая, что такие промежутки будут повторяться бесконечное количество раз после любого целого количества поворотов, получим общее решение с учетом периода синуса :

Круглые скобки ставим из-за того, что неравенство строгое, и точки на окружности, которые соответствуют концам промежутка, мы выкалываем.

Сравните полученный ответ с формулой общего решения, которую мы приводили на лекции.

Ответ..

Указанный способ хорош для понимания того, откуда берутся формулы общих решений простейших тригонеравенств. Кроме того, он полезен для тех, кому лень учить все эти громоздкие формулы. Однако сам по себе способ тоже непростой, выберете, какой подход к решению вам наиболее удобен.

Для решения тригонометрических неравенств можно использовать и графики функций, на которых строится вспомогательная линия аналогично показанному способу с использованием единичной окружности. Если вам интересно, попробуйте самостоятельно разобраться с таким подходом к решению. В дальнейшем будем использовать общие формулы для решения простейших тригонометрических неравенств.

Задача №10 . Решить неравенство .

Воспользуемся формулой общего решения с учетом того, что неравенство нестрогое:

Получаем в нашем случае:

Ответ.

Задача №11 . Решить неравенство .

Воспользуемся формулой общего решения для соответствующего строго неравенства:

Ответ..

Задача №12 . Решить неравенства: а) ; б) .

В указанных неравенствах не надо спешить использовать формулы общих решений или тригонометрическую окружность, достаточно просто вспомнить об области значений синуса и косинуса.

а) Поскольку , то неравенство не имеет смысла. Следовательно, решений нет.

б) Т. к. аналогично , то синус от любого аргумента всегда удовлетворяет указанному в условии неравенству . Следовательно неравенству удовлетворяют все действительные значения аргумента .

Ответ. а) решений нет; б) .

Задача 13 . Решить неравенство .

Это простейшее неравенство со сложным аргументом решается аналогично подобному уравнению. Сначала находим решение для всего указанного в скобках аргумента целиком, а потом преобразовываем его к виду «», работая с обоими концами промежутка, как с правой частью уравнения.

ТЕМА УРОКА: Решение простейших тригонометрических неравенств

Цель урока: показать алгоритм решения тригонометрических неравенств с использованием единичной окружности.

Задачи урока :

    Образовательные – обеспечить повторение и систематизацию материала темы; создать условия контроля усвоения знаний и умений;

    Развивающие – способствовать формированию умений применять приемы: сравнения, обобщения, выявления главного, переноса знаний в новую ситуацию, развитию математического кругозора, мышления и речи, внимания и памяти;

    Воспитательные – содействовать воспитанию интереса к математике и ее приложениям, активности, мобильности, умения общаться, общей культуры.

Знания и навыки учащихся:
- знать алгоритм решения тригонометрических неравенств;

Уметь решать простейшие тригонометрические неравенства.

Оборудование: интерактивная доска, презентация к уроку, карточки с заданиями самостоятельной работы.

ХОД УРОКА:
1. Организационный момент (1 мин)

Девизом урока предлагаю слова Сухомлинского: « Сегодня – мы учимся вместе: я, ваш учитель и вы мои ученики. Но в будущем ученик должен превзойти учителя, иначе в науке не будет прогресса».

2. Разминка. Диктант «Верно - неверно»

3. Повторение

Для каждого варианта - задания на слайде, продолжите каждую запись. Время выполнения 3 мин.

Давайте выполним взаимопроверку этой нашей работы, используя таблицу ответов на доске.

Критерий оценки: «5» - все 9 «+», «4» - 8 «+», «3» - 6-7 «+»

4. Актуализация знаний учащихся (8 мин)
Сегодня на уроке мы должны усвоить понятие тригонометрического неравенства и овладеть навыками решения таких неравенств.
– Давайте вначале вспомним, что такое единичная окружность, радианная мера угла и как связан угол поворота точки на единичной окружности с радианной мерой угла. (работа с презентацией)

Единичная окружность - это окружность с радиусом 1 и центром в начале координат.

Угол, который образован положительным направлением оси OX и лучом OA, называется углом поворота. Важно запомнить, где находятся углы 0; 90; 180; 270; 360.

Если A перемещается против часовой стрелки, получаются положительные углы.

Если A перемещается по часовой стрелке, получаются отрицательные углы.

сos t – это абсцисса точки единичной окружности, sin t – ордината точки единичной окружности, t – угол поворота с координатами (1;0).
5 . Объяснение нового материала (17 мин )
Сегодня мы познакомимся с простейшими тригонометрическими неравенствами.
Определение.
Простейшими тригонометрическими неравенствами называют неравенства вида:

Как решить такие неравенств нам расскажут ребята (представление проектов учащимися с примерами). Определения и примеры учащиеся записывают в тетради.

В ходе выступления учащиеся объясняют решение неравенства, учитель дополняет рисунки на доске.
Алгоритм решения простейших тригонометрических неравенств дается после выступления учащихся. Все этапы решения неравенства учащиеся видят на экране. Это способствует зрительному запоминанию алгоритма решения данной задачи.

Алгоритм решения тригонометрических неравенств с помощью единичной окружности:
1. На оси, соответствующей заданной тригонометрической функции, отметить данное числовое значение этой функции.
2. Провести через отмеченную точку прямую, пересекающую единичную окружность.
3. Выделить точки пересечения прямой и окружности с учетом строгого или нестрогого знака неравенства.
4. Выделить дугу окружности, на которой расположены решения неравенства.
5. Определить значения углов в начальной и конечной точках дуги окружности.
6. Записать решение неравенства с учетом периодичности заданной тригонометрической функции.
Для решения неравенств с тангенсом и котангенсом полезно понятие о линии тангенсов и котангенсов. Таковыми являются прямые x = 1 и y = 1 соответственно, касающиеся тригонометрической окружности.
6. Практическая часть (12 мин)
Для отработки и закрепления теоретических знаний выполним небольшие задания. Каждый учащийся получает карточки с заданиями. Решив неравенства, нужно выбрать ответ и записать его номер.

7. Рефлексия деятельности на уроке
- Какая цель стояла перед нами?
- Назовите тему урока
- Получилось воспользоваться известным алгоритмом
- Проанализируйте свою работу на уроке.

8. Домашнее задание (2 мин)

Решите неравенство:

9. Итог урока (2 мин)

Предлагаю закончить урок словами Я.А.Коменского: “ Считай несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию ”.