Эволюция — от микроба до человека. Общая характеристика и строение типа простейших Демографическая структура популяции

Жизнь на Земле появилась миллиарды лет назад, и с тех пор живые организмы становились всё сложнее и разнообразнее. Существует множество доказательств того, что всё живое на нашей планете имеет общее происхождение. Хотя механизм эволюции ещё не до конца понятен учёным, сам её факт не подлежит сомнению. В этом посте — о том, какой путь прошло развитие жизни на Земле от самых простейших форм до человека, какими были много миллионов лет назад наши далёкие предки. Итак, от кого же произошёл человек?

Земля возникла 4,6 миллиардов лет назад из газопылевого облака, окружавшего Солнце. В начальный период существования нашей планеты условия на ней были не очень комфортными — в окружающем космическом пространстве летало ещё много обломков, которые постоянно бомбардировали Землю. Считается, что 4,5 млрд лет назад Земля столкнулась с другой планетой, в результате этого столкновения образовалась Луна. Первоначально Луна была очень близко к Земле, но постепенно отдалялась. Из-за частых столкновений в это время поверхность Земли находилась в расплавленном состоянии, имела очень плотную атмосферу, а температура на поверхности превышала 200°C. Через некоторое время поверхность затвердела, образовалась земная кора, появились первые материки и океаны. Возраст самых древних исследованных горных пород составляет 4 миллиарда лет.

1) Древнейший предок. Археи.

Жизнь на Земле появилась, согласно современным представлениям, 3,8-4,1 млрд лет назад (самому раннему из найденных следов бактерий 3,5 млрд лет). Как именно возникла жизнь на Земле, до сих пор надёжно не установлено. Но вероятно, уже 3,5 млрд. лет назад, существовал одноклеточный организм, который имел все черты, присущие всем современным живым организмам и был для всех них общим предком. От этого организма всем его потомкам достались черты строения (все они состоят из клеток, окружённых оболочкой), способ хранения генетического кода (в закрученных двойной спиралью молекулах ДНК), способ хранения энергии (в молекулах АТФ) и т. д. От этого общего предка произошли три основные группы одноклеточных организмов, существующих до сих пор. Сначала разделились между собой бактерии и археи, а затем от архей произошли эукариоты — организмы, клетки которых имеют ядро.

Археи почти не изменились за миллиарды лет эволюции, вероятно примерно так же выглядели и древнейшие предки человека

Хотя археи дали начало эволюции, многие из них дожили до наших дней почти в неизменном виде. И это не удивительно — с древних времён археи сохранили способность выживать в самых экстремальных условиях — при отсутствии кислорода и солнечного света, в агрессивных — кислых, солёных и щелочных средах, при высоких (некоторые виды прекрасно чувствуют себя даже в кипятке) и низких температурах, при высоких давлениях, также они способны питаться самыми разными органическими и неорганическими веществами. Их далёкие высокоорганизованные потомки совсем не могут этим похвастаться.

2) Эукариоты. Жгутиковые.

Длительное время экстремальные условия на планете мешали развитию сложных форм жизни, и на ней безраздельно господствовали бактерии и археи. Примерно 3 млрд. лет назад на Земле появляются цианобактерии. Они начинают использовать процесс фотосинтеза для поглощения углерода из атмосферы, выделяя при этом кислород. Выделяющийся кислород сначала расходуется на окисление горных пород и железа в океане, а затем начинает накапливаться в атмосфере. 2,4 млрд. лет назад происходит «кислородная катастрофа» — резкое повышение содержание кислорода в атмосфере Земли. Это приводит к большим изменениям. Для многих организмов кислород оказывается вреден, и они вымирают, заменяясь такими, которые наоборот, используют кислород для дыхания. Меняется состав атмосферы и климат, становится значительно холоднее из-за падения содержания парниковых газов, но появляется озоновый слой, защищающий Землю от вредного ультрафиолетового излучения.

Примерно 1,7 млрд лет назад от архей произошли эукариоты — одноклеточные организмы, клетки которых имели более сложное строение. Их клетки, в частности, содержали ядро. Впрочем, возникшие эукариоты имели не одного предшественника. Например, митохондрии, важные составляющие клеток всех сложных живых организмов, произошли от свободноживущих бактерий, захваченных древними эукариотами.

Существует много разновидностей одноклеточных эукариот. Считается, что все животные, а значит и человек, произошли от одноклеточных организмов, которые научились передвигаться при помощи жгутика, расположенного сзади клетки. Жгутики также помогают фильтровать воду в поисках пищи.

Хоанофлагеллаты под микроскопом, как полагают учёные, именно от подобных существ некогда произошли все животные

Некоторые виды жгутиковых живут, объединяясь в колонии, считается, что из таких колоний простейших жгутиковых некогда произошли первые многоклеточные животные.

3) Развитие многоклеточных. Билатерии.

Примерно 1,2 млрд. лет назад появляются первые многоклеточные организмы. Но эволюция всё ещё медленно продвигается, вдобавок развитию жизни мешают . Так, 850 млн. лет назад начинается глобальное оледенение. Планета более чем на 200 млн. лет покрывается льдом и снегом.

Точные детали эволюции многоклеточных, к сожалению, неизвестны. Но известно, что через некоторое время первые многоклеточные животные разделились на группы. Дожившие до наших дней без особых изменений губки и пластинчатые не имеют отдельных органов и тканей и отфильтровывают питательные вещества из воды. Ненамного сложнее устроены кишечнополостные, имеющие лишь одну полость и примитивную нервную систему. Все же остальные более развитые животные, от червей до млекопитающих, относятся к группе билатерий, и их отличительным признаком является двусторонняя симметрия тела. Когда появились первые билатерии, доподлинно неизвестно, вероятно это произошло вскоре после окончания глобального оледенения. Формирование двусторонней симметрии и появление первых групп билатеральных животных, вероятно, происходило между 620 и 545 млн. лет назад. Находки ископаемых отпечатков первых билатерий относятся ко времени 558 млн. лет назад.

Кимберелла (отпечаток, внешний вид) — один из первых обнаруженных видов билатерий

Вскоре после своего возникновения билатерии разделяются на первичноротых и вторичноротых. От первичноротых происходят почти все беспозвоночные животные — черви, моллюски, членистоногие и т. д. Эволюция вторичноротых приводит к появлению иглокожих (таких, как морские ежи и звёзды), полухордовых и хордовых (к которым относится и человек).

Недавно в Китае были найдены остатки существ, получивших название Saccorhytus coronarius. Они жили примерно 540 млн. лет назад. По всем признакам это маленькое (размером всего около 1 мм) существо было предком всех вторичноротых животных, а значит, и человека.

Saccorhytus coronarius

4) Появление хордовых. Первые рыбы.

540 млн. лет назад происходит «кембрийский взрыв» — за очень короткий период времени появляется огромное число самых разных видов морских животных. Фауну этого периода удалось хорошо изучить благодаря сланцам Бёрджес в Канаде, где сохранились остатки огромного числа организмов этого периода.

Некоторые из животных кембрийского периода, останки которых найдены в сланцах Бёрджес

В сланцах нашли множество удивительных животных, к сожалению, давно вымерших. Но одной из наиболее интересных находок стало обнаружение останков небольшого животного, получившего название пикайя. Это животное — самый ранний из найденных представителей типа хордовых.

Пикайя (останки, рисунок)

У пикайи были жабры, простейший кишечник и кровеносная система, а также небольшие шупальца возле рта. Это небольшое, размером около 4 см. животное напоминает современных ланцетников.

Появление рыб не заставило себя долго ждать. Первым из найденных животных, которое можно отнести к рыбам, считается хайкоуихтис. Он был ещё меньше пикайи (всего 2,5 см), но у него уже были глаза и головной мозг.

Примерно так выглядел хайкоуихтис

Пикайя и хайкоуихтис появились между 540 и 530 млн. лет назад.

Вслед за ними в морях вскоре появилось множество рыб большего размера.

Первые ископаемые рыбы

5) Эволюция рыб. Панцирные и первые костные рыбы.

Эволюция рыб продолжалась довольно долго, и поначалу они совсем не были доминирующей группой живых существ в морях, как сегодня. Напротив, им приходилось спасаться от таких крупных хищников, как ракоскорпионы. Появились рыбы, у которых голова и часть туловища были защищены панцирем (считается, что череп впоследствии развился из такого панциря).

Первые рыбы были бесчелюстными, вероятно, они питались мелкими организмами и органическими остатками, втягивая и фильтруя воду. Лишь около 430 млн. лет назад появились первые рыбы, имеющие челюсти — плакодермы, или панцирные рыбы. Голова и часть туловища у них была прикрыта костным панцирем, обтянутым кожей.

Древняя панцирная рыба

Некоторые из панцирных рыб приобрели большие размеры и стали вести хищный образ жизни, но дальнейший шаг в эволюции был сделан благодаря появлению костных рыб. Предположительно, от панцирных рыб произошёл общий предок хрящевых и костных рыб, населяющих современные моря, а сами панцирные рыбы, появившиеся примерно в одно с ними время акантоды, а также почти все бесчелюстные рыбы впоследствии вымерли.

Entelognathus primordialis — вероятная промежуточная форма между панцирными и костными рыбами, жил 419 млн. лет назад

Самой первой из обнаруженных костных рыб, а значит, и предком всех сухопутных позвоночных, включая человека, считается живший 415 млн. лет назад Guiyu Oneiros. По сравнению с хищными панцирными рыбами, достигавшими в длину 10 м, эта рыба была небольшой — всего 33 см.

Guiyu Oneiros

6) Рыбы выходят на сушу.

Пока рыбы продолжали эволюционировать в море, растения и животные других классов уже выбрались на сушу (следы присутствия на ней лишайников и членистоногих обнаруживаются ещё 480 млн. лет назад). Но в конце концов освоением суши занялись и рыбы. От первых костных рыб произошли два класса — лучепёрые и лопастопёрые. К лучепёрым относится большинство современных рыб, и они прекрасно приспособлены для жизни в воде. Лопастепёрые, напротив, приспособились к жизни на мелководье и в небольших пресных водоёмах, в результате чего их плавники удлинились, а плавательный пузырь постепенно превратился в примитивные лёгкие. В результате эти рыбы научились дышать воздухом и ползать по суше.

Эвстеноптерон () — одна из ископаемых кистепёрых рыб, которая считается предком сухопутных позвоночных. Эти рыбы жили 385 млн. лет назад и достигали длины 1,8 м.

Eusthenopteron (реконструкция)

— ещё одна кистепёрая рыба, которая считается вероятной промежуточной формой эволюции рыб в земноводных. Она уже могла дышать лёгкими и выползать на сушу.

Panderichthys (реконструкция)

Тиктаалик, найденные останки которого относятся ко времени 375 млн. лет назад, был ещё ближе к земноводным. У него были рёбра и лёгкие, он мог вертеть головой отдельно от туловища.

Тиктаалик (реконструкция)

Одними из первых животных, которых причисляют уже не к рыбам, а к земноводным, стали ихтиостеги. Они жили около 365 млн. лет назад. Эти небольшие животные длиной около метра, хотя уже и имели лапы вместо плавников, всё ещё с трудом могли передвигаться по суше и вели полуводный образ жизни.

Ихтиостега (реконструкция)

На время выхода позвоночных на сушу пришлось очередное массовое вымирание — девонское. Оно началось примерно 374 млн. лет назад, и привело к вымиранию почти всех бесчелюстных рыб, панцирных рыб, многих кораллов и других групп живых организмов. Тем не менее первые земноводные выжили, хотя им и понадобился ещё не один миллион лет, чтобы более-менее адаптироваться к жизни на суше.

7) Первые рептилии. Синапсиды.

Начавшийся примерно 360 млн. лет назад и продолжавшийся 60 млн. лет каменноугольный период был очень благоприятен для земноводных. Значительную часть суши покрывали болота, климат был тёплым и влажным. В таких условиях многие земноводные продолжали жить в воде или около неё. Но примерно 340-330 млн. лет назад некоторые из земноводных решили освоить и более сухие места. У них развились более сильные конечности, появились более развитые лёгкие, кожа, наоборот стала сухой, чтобы не терять влагу. Но чтобы действительно длительное время жить далеко от воды, нужно было ещё одно важное изменение, ведь земноводные, как и рыбы, метали икру, и их потомство должно было развиваться в водной среде. И около 330 млн. лет назад появились первые амниоты, т. е. животные, способные откладывать яйца. Оболочка первых яиц была ещё мягкой, а не твёрдой, тем не менее, их уже можно было откладывать на суше, а значит, потомство уже могло появляться вне водоёма, минуя стадию головастиков.

Учёные до сих пор путаются в классификации земноводных каменноугольного периода, а также в том, считать ли некоторые ископаемые виды уже ранними рептилиями, либо всё ещё земноводными, приобретшими лишь некоторые черты рептилий. Так или иначе, эти то ли первые рептилии, то ли рептилоподобные земноводные выглядели примерно так:

Вестлотиана — небольшое животное длиной около 20 см., сочетавшее черты рептилий и земноводных. Жило примерно 338 млн. лет назад.

А затем ранние рептилии разделились, дав начало трём большим группам животных. Палеонтологи выделяют эти группы по строению черепа — по числу отверстий, через которые могут проходить мышцы. На рисунке сверху вниз черепа анапсида , синапсида и диапсида :

При этом анапсидов и диапсидов часто объединяют в группу завропсидов . Казалось бы, отличие совершенно незначительное, тем не менее, дальнейшая эволюция этих групп пошла совершенно разными путями.

От завропсидов произошли более продвинутые рептилии, включая динозавров, а затем птицы. Синапсиды же дали начало ветви звероподобных ящеров, а затем и млекопитающим.

300 млн. лет назад начался Пермский период. Климат стал более сухим и холодным и на суше стали доминировать ранние синапсиды — пеликозавры . Одним из пеликозавров был Диметродон, имевший в длину до 4х метров. На спине у него был большой «парус», который помогал регулировать температуру тела: быстро охладиться при перегреве или, наоборот, быстро согреться, подставив спину солнцу.

Считается, что огромный диметродон является предком всех млекопитающих, а значит, и человека.

8) Цинодонты. Первые млекопитающие.

В середине Пермского периода от пеликозавров происходят терапсиды, больше уже похожие на зверей, чем на ящеров. Выглядели терапсиды примерно так:

Типичный терапсид Пермского периода

В течение Пермского периода возникло много видов терапсид, больших и маленьких. Но 250 млн. лет назад происходит мощный катаклизм. Из-за резкого усиления вулканической активности температура повышается, климат становится очень сухим и жарким, большие площади суши заливает лава, а атмосферу наполняют вредные вулканические газы. Происходит Великое Пермское вымирание, самое масштабное в истории Земли массовое вымирание видов, вымирают до 95% морских и около 70% сухопутных видов. Из всех терапсид выживает лишь одна группа — цинодонты .

Цинодонты были животными преимущественно небольшого размера, от нескольких сантиметров до 1-2 метров. Среди них были как хищники, так и травоядные.

Циногнат — вид хищных цинодонтов, живших около 240 млн. лет назад. Был в длину около 1.2 метра, один из возможных предков млекопитающих.

Однако, после того, как климат наладился, цинодонтам было не суждено захватить планету. Диапсиды перехватили инициативу — от мелких рептилий произошли динозавры, которые вскоре заняли большинство экологических ниш. Цинодонты не могли с ними тягаться, они измельчали, им пришлось прятаться в норах и выжидать. Реванш удалось взять нескоро.

Однако цинодонты выживали, как могли, и продолжали эволюционировать, всё больше становясь похожими на млекопитающих:

Эволюция цинодонтов

Наконец, от цинодонтов произошли первые млекопитающие. Они были маленькими и вели, предположительно, ночной образ жизни. Опасное существование среди большого количества хищников способствовало сильному развитию всех органов чувств.

Одним из первых настоящих млекопитающих считается Мегазостродон.

Мегазостродон жил примерно 200 млн. лет назад. Его длина была всего около 10 см. Мегазостродон питался насекомыми, червями и другими мелкими животными. Вероятно, он или другой похожий зверёк и был предком всех современных млекопитающих.

Дальнейшую эволюцию — от первых млекопитающих до человека — мы рассмотрим в .

Как известно, в 1675 г. т. е. более трёхсот лет назад, А. Левенгук открыл «анималькулов» (зверушек), которых впоследствии назвали инфузориями . С 1820 г. установилось название Protozoa, что в перево-де с греческого означает «простейшие животные». Зоолог К. Зибольд посчитал их особым типом животного царства и выделил два класса: инфузорий и корненожек. Он же определил, что простота их органи-зации соответствует одной клетке. С тех пор одноклеточность про-стейших стала общепризнанной, а название «одноклеточные» и «про-стейшие» стали синонимами.

По уровню организации все живые организмы классифицируются на две группы. Привычное для нас деление на одноклеточных и мно-гоклеточных потребовало уточнения, после того как при изучении строения организмов был применён электронный микроскоп и появи-лись новые методы исследования. Возникли вопросы об основных различиях, определяющих уровни развития, а также о планах строе-ния. Поэтому необходимо рассмотреть организацию простейших — парафилетической группы, объединяющей представителей органического мира, относимых ранее к растениям, животным и грибам, но имеющих свои специфиче-ские особенности.

Самозарождение

Природа простейших долгое время оставалась предметом спора. Одни учёные рассматривали их как живых молекул, или простые ком-плексы таких молекул, которые способны самозарождаться, т. е. воз-никать сами по себе. Этих воззрений придерживались немногие учение, тем более что блестящие опыты Л. Спаланцани в XVIII в. Л. Пастера в XIX в. опровергли идею самозарождения.

Целлюляризация

Другие учёные считали простейших весьма сложно организованными существами, которых можно структурно сравнить с высокоорганизованными жи-вотными. Основание для этого они видели в том, что в организме мно-гоклеточных есть структуры, не имеющие разделения на клетки, на-пример синцитии. Исходя из подобных воззрений, зоолог Й. Хаджи в 50-60-е годы XX в. выдвинул даже теорию происхождения многокле-точных животных путём целлюляризации. Обнаружив сходство инфу-зорий с самыми примитивными ресничными червями, так называемы-ми бескишечными, Хаджи предположил, что при обособлении частей тела инфузории, содержащих органоиды, и образовании между ними перегородок возникает многоклеточный организм. Следовательно, по своей природе инфузория сравнима с целым организмом низших мно-гоклеточных. Однако после электронно-микроскопических исследова-ний было доказано, что теория целлюляризации опирается только на внешние аналогии и конвергентные сходства.

Клеточная теория Т. Шванна

С позиций клеточной теории, разработанной М. Шлейденом и Т. Шванном, простейшие представляют собой одноклеточные орга-низмы. По мнению современных учёных, придерживающихся этих воззрений, простейшие — это клетки, которые функционально являются организмами. Однако функции не могут существовать отдельно от определённых структур. Таким образом, современное определение простейших как микроскопических одноклеточных животных, пред-ставляющих собой физиологически самостоятельные организмы, не соответствует нынешнему уровню знаний. Удовлетворительное опре-деление простейших может быть дано после ответов на следующие вопросы: являются ли простейшие только одноклеточными организ-мами? Всегда ли их размеры микроскопически малы? Являются ли они исключительно животными? Являются ли они организмами толь-ко в физиологическом отношении?

Подцарство Одно-клеточные (Простейшие) объединяет животных, тело которых состоит из одной клетки. Она выполняет функции самостоятельного организма. Клетка простейшего состоит из цитоплазмы, органоидов, одного или нескольких ядер. В ней происходят обмен ве-ществ с внешней средой, процессы размножения в развития.

Многие одноклеточные обладают специальными органоидами (движения, питания, выделения), возникшими как результат приспособления к среде обитания.

Клетка — это самовоспроизводящееся образование, отделённое от своего окружения плазматической мембраной, способ-ствующей регуляции обмена между внутренней и внешней средой.

Простейшие животные — процветающая и разнообраз-ная группа (около 70 000 видов) — обитатели водоёмов и влажной почвы. Преимущественно они входят в состав зоопланктона — совокупность мельчайших животных, обитающих в морских и пресноводных водоёмах. На суше они встречаются тоже в водной среде — в почвенной капельной воде, а также в жидкой среде внутри много-клеточных животных и растений. Хотя почвенные про-стейшие животные могут существенно влиять на коли-чество бактерий, все же их значение несравненно меньше, чем у простейших в пресных и морских водоёмах.

Многие простейшие животные так же мелки и просто устроены, как и некоторые клетки крупных животных. Но они отличаются от них тем, что способны жить само-стоятельно. Одноклеточные животные представляют собой слаженный организм, осуществляющий питание, дыхание, выделение, размножение, рост, развитие и обмен веществ. У него в протоплазме существует как бы разделение труда: каждая из её обособленных, более мелких образований выполняет свою особую задачу.

Например, ядро регулирует жизнедеятельность всего одно-клеточного организма и воспроизводит само себя, благодаря чему образуются новые дочерние организмы; в пищеварительной вакуоли происходит переваривание пищи; сократительная ваку-оль удаляет избыток воды и растворенные в ней вредные для организма вещества.

При неблагоприятных условиях многие простейшие перестают питаться, теряют органы движения, покрываются толстой оболочкой и образуют цисту. При наступлении благоприятных условий однокле-точные принимают прежний облик.

Согласно названию Protozoa, в это подцарство должны входить только животные. Но в современной системе простейших содержатся зелёные жгутиконосцы (ботаники считают их водорослями), миксомицеты и плазмодиофориды (по мнению микологов, это грибы) и т. д. В связи с этим древние простейшие скорее всего могут рассматривать-ся в качестве исходной группы, давшей начало и грибам, и растениям, и животным. Поэтому в настоящее время должно считаться признанным выделение особого царства протистов и противопоставление его царствам растений и животных. Выделение царства протистов при-надлежит знаменитому зоологу и эволюционисту Э. Геккелю (1866). Protozoa же могут быть выделены в системе протистов в качестве подцарства.

Одноклеточные прошли длительный путь эволюции, в ходе которой возникло их огромное разнообразие. В зависимости от сложности строения и спо-собов передвижения выделяют несколько типов простейших. Материал с сайта

  • Саркожгутиконосцы (Саркомастигофоры) .
    • Саркодовые.

Со времён Линнея и до наших дней простейшие привлекают вни-мание учёных по разным причинам. Возникла даже специальная наука — протозоология.

Пищевые цепи и трофические уровни

Вспомним биотическую структуру экосистемы. Внутри экосистемы содержащие энергию органические вещества создаются автотрофными организмами и служат пищей (источником вещества и энергии) для гетеротрофов.

Питаясь друг другом, живые организмы осуществляют перенос энергии и вещества и образуют цепи питания. Пищевые отношения также называют трофическими (от греч. трофее – жизнь)

Трофическая (пищевая) цепь это цепь последовательной передачи вещества и эквивалентной ему энергии от одних организмов к другим, а каждое ее звено - трофическим уровнем (греч. trophos – питание). Первый трофический уровень занимают автотрофы, или так называемые первичные продуценты. Организмы второго трофического уровня называются первичными консументами, третьего – вторичными консументами и т.д. Обычно бывает четыре или пять трофических уровней и редко больше шести.

Последний трофический уровень – редуценты – они осуществляют минерализацию, причем могут разлагать все трофические уровни, начиная со 2.

Различают 2 вида пищевых цепей:

Цепи выедания (пастбищные) – начинаются с живых фототрофов. Например

Трава → мышь→ сова → ястреб

Цепи разложения (детритные) – начинаются с детрита. Например,

Мертвое животное → личинки мух → травяная лягушка →уж.

Стрелка показывает перенос энергии.

Цепи выедания преобладают в водных экосистемах, цепи разложения – в экосистемах суши.

Реально пищевые цепи намного сложнее, т.к. животное может питаться организмами разных типов. Некоторые животные питаются другими животными и растениями, всеядные (человек, медведь). Цепи сложным образом переплетаются и образуют пищевые сети. Например

Пищевые цепи можно представить в виде экологических пирамид, в которых прямоугольники отображают экологическую эффективность уровня и располагаются один над другим. Высота блоков одинакова, а длина каждого пропорциональна продуктивности каждого уровня (числу, массе, кол-ву энергии). Высота пирамиды соответствует длине пищевой цепи.

Экологическая пирамида представляет собой трофическую цепь. Чем длиннее цепь, тем меньше значение по биомассе, числу или энергии имеют плодоядные на вершине пирамиды. Всего около 0,1% энергии, полу- чаемой от Солнца, связывается в процессе фотосинтеза. За счет этой энергии синтезируется несколько тысяч грамм сухого органического вещества на 1 м3 в год. Более половины энергии, связанной при фотосинтезе, тут же расходуется в процессе дыхания самих растений. Другая её часть переносится посредством ряда организмов по пищевым цепям. При поедании животными растений большая часть энергии, содержащейся в пище: расходуется на различные процессы жизнедеятельности, превращаясь в тепло и рассеиваясь. Только 5-20% энергии пищи переходит во вновь построенное вещество тела животного. Проиллюстрируем: пирамидами чисел, биомасс и энергий очень простую пищевую цепь человека.


Пирамида чисел (пирамида Элтона):

На Земле обитает более 2 млн животных, и список этот постоянно пополняется.

Наука, изучающая строение, поведение, особенности жизнедеятельности животных, называется зоологией.

Размеры животных колеблются от нескольких микрон до 30 м. Одни из них видны только в микроскоп, как, например, амеба и инфузории, а другие относятся к гигантам. Это киты, слоны, жирафы. Среда обитания животных самая разнообразная: это вода, суша, почва и даже живые организмы.

Имея общие черты с другими представителями эукариот, животные имеют и существенные отличия. Клетки животных лишены оболочки и пластид. Питаются они готовыми органическими веществами. Значительная часть животных активно двигается и имеет специальные органы движения.

Царство животных разделено на два подцарства: одноклеточные (простейшие) и многоклеточные.

Рис. 77. Простейшие: 1 - амеба; 2 - эвглена зеленая; 3 - фораминиферы (раковины); 4 - инфузория-туфелька (1 - большое ядро; 2 - малое ядро; 3 - клеточный рот; 4 - клеточная глотка; 5 - пищеварительная вакуоль; 6 - порошица; 7 - сократительные вакуоли; 8 - реснички)

Простейших делят на несколько типов, наиболее широко распространенные и значимые из них Саркодовые, Жгутиковые, Споровики и Инфузории.

Саркодовые (Корненожки). Типичным представителем саркодовых является амеба. Амеба - это пресноводное свободноживущее животное, не имеющее постоянной формы тела. Клетка амебы при движении образует псевдоподии, или ложноножки, которые служат также для захвата пищи. В клетке хорошо заметны ядро и пищеварительные вакуоли, которые образуются на месте захвата амебой пищи. Кроме того, имеется и сократительная вакуоль, через которую удаляются избыток воды и жидкие продукты обмена. Размножается амеба простым делением. Дыхание происходит через всю поверхность клетки. Амеба обладает раздражимостью: положительной реакцией на свет и пищу, отрицательной - на соль.

Раковинные амебы - фораминиферы имеют наружный скелет - раковину. Она состоит из органического слоя, пропитанного известняком. Раковина имеет многочисленные отверстия - дырочки, через которые высовываются псевдоподии. Величина раковин обычно небольшая, однако у некоторых видов она может достигать 2-3 см. Раковины отмерших фораминифер образуют на морском дне отложения - известняки. Там же обитают и другие раковинные амебы - радиолярии (лучевики). В отличие от фораминифер, они обладают внутренним скелетом, который располагается в цитоплазме и образует иголочки - лучи, часто ажурной конструкции. Кроме органического вещества в состав скелета входят соли стронция - случай в природе единственный. Эти иголки образуют минерал - целестин.

Жгутиковые. Эти микроскопические животные имеют постоянную форму тела и передвигаются с помощью жгутиков (одного или нескольких). Эвглена зеленая - одноклеточный организм, обитающий в воде. Ее клетка имеет веретеновидную форму, на конце ее находится один жгутик. У основания жгутика расположены сократительная вакуоль и светочувствительный глазок (стигма). Кроме того, в клетке имеются хроматофоры, содержащие хлорофилл. Поэтому эвглена на свету фотосинтезирует, в темноте питается готовыми органическими веществами.

После нескольких бесполых поколений в эритроцитах появляются клетки, из которых развиваются гаметы. Для дальнейшего развития они должны попасть в кишечник комара анофелеса. Когда комар кусает больного малярией, гаметы с кровью попадают в пищеварительный тракт, где происходит половое размножение и образование спорозоитов.

Инфузории - самые сложноорганизованные представители простейших, их насчитывается более 7 тыс. видов. Один из наиболее известных представителей - инфузория-туфелька. Это довольно крупное одноклеточное животное, обитающее в пресных водоемах. Ее тело по форме напоминает след туфельки и покрыто плотной оболочкой с ресничками, синхронное движение которых обеспечивает передвижение инфузории. У нее имеется клеточный рот, окруженный ресничками. С их помощью инфузория создает ток воды, с которым в «рот» попадают бактерии и другие мелкие организмы, которыми она питается. В теле инфузории образуется пищеварительная вакуоль, которая может перемещаться по всей клетке. Непереваренные остатки пищи выбрасываются наружу через специальное место - порошицу. У инфузории два ядра - большое и малое. Малое ядро принимает участие в половом процессе, а большое управляет синтезом белков и ростом клетки. Размножается туфелька как половым, так и бесполым путем. Бесполое размножение через несколько поколений сменяется половым. Далее (§ 58-65) рассматриваются многоклеточные организмы Царства животных.

| |
§ 56. Семенные растения § 58. Царство животных. Многоклеточные: губки и кишечнополостные

] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

§ 8. Трофические уровни. Экологические пирамиды

Понятие о трофических уровнях. Трофический уровень - это совокупность организмов, занимающих определенное положение в общей цепи питания. К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой поток вещества и энергии в экосистеме, основу ее организации.

Трофическая структура экосистемы. В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или пх биомассой, или заключенной в них энергией, рассчитанными на единицу площади в единицу времени.

Трофическую структуру обычно изображают в виде экологических пирамид. Эту графическую модель разработал в 1927 г. американский зоолог Чарльз Элтон. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а следующие этажи пирамиды образованы последующими уровнями - консументами различных порядков. Высота всех блоков одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

1. Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).

2. Пирамида биомасс - соотношение масс организмов разных трофических уровней. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70-90 кг свежей травы.

В водных экосистемах можно также получить обращенную, или перевернутую, пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса в данный момент его может быть меньше, нежели у потребителей-консументов (киты, крупные рыбы, моллюски).

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем. Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

3. Пирамида энергии отражает величину потока энергии, скорость про хождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энер гии, а скорость продуцирования пищи.

Установлено, что максимальная величина энергии, передающейся на следующий трофический уровень, может в некоторых случаях составлять 30 % от предыдущего, и это в лучшем случае. Во многих биоценозах, пищевых цепях величина передаваемой энергии может составлять всего лишь 1 %.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90 % всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Вот почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей. К конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Этому утверждению можно найти объяснение, проследив, куда тратится энергия потребленной пищи (С). Часть ее идет на построение новых клеток, т.е. на прирост (Р). Часть энергии пищи расходуется на обеспечение энергетического обмена 7или на дыхание (i ?) . Поскольку усвояемость пищи не может быть полной, т.е. 100 %, то часть неусвоенной пищи в виде экскрементов удаляется из организма (F). Балансовое равенство будет выглядеть следующим образом:

С = Р + R + F .

Учитывая, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы, становится ясным, почему каждый последующий уровень всегда будет меньше предыдущего.

Именно поэтому большие хищные животные всегда редки. Поэтому также нет хищников, которые питались бы волками. В таком случае они просто не прокормились бы, поскольку волки немногочисленны.

Трофическая структура экосистемы выражается в сложных пищевых связях между составляющими ее видами. Экологические пирамиды чисел, биомассы и энергии, изображенные в виде графических моделей, выражают количественные соотношения разных по способу питания организмов: продуцентов, консументов и редуцентов.

1. Дайте определение трофического уровня. 2. Приведите примеры организмов, относящихся к одному трофическому уровню. 3. По какому принципу строятся экологические пирамиды? 4. Почему пищевая цепь не может включать более 3 - 5 звеньев?

Общая биология: Учебное пособие для 11-го класса 11-летней общеобразовательной школы, для базового и повышенного уровней. Н.Д. Лисов, Л.В. Камлюк, Н.А. Лемеза и др. Под ред. Н.Д. Лисова.- Мн.: Беларусь, 2002.- 279 с

Содержание учебника Общая биология: Учебное пособие для 11-го класса:

    Глава 1. Вид - единица существования живых организмов

  • § 2. Популяция - структурная единица вида. Характеристика популяции
  • Глава 2. Взаимоотношения видов, популяций с окружающей средой. Экосистемы

  • § 6. Экосистема. Связи организмов в экосистеме. Биогеоценоз, структура биогеоценоза
  • § 7. Движение вещества и энергии в экосистеме. Цепи и сети питания
  • § 9. Круговорот веществ и поток энергии в экосистемах. Продуктивность биоценозов
  • Глава 3. Формирование эволюционных взглядов

  • § 13. Предпосылки возникновения эволюционной теории Ч. Дарвина
  • § 14. Общая характеристика эволюционной теории Ч. Дарвина
  • Глава 4. Современные представления об эволюции

  • § 18. Развитие эволюционной теории в последарвиновский период. Синтетическая теория эволюции
  • § 19. Популяция - элементарная единица эволюции. Предпосылки эволюции
  • Глава 5. Происхождение и развитие жизни на Земле

  • § 27. Развитие представлений о возникновении жизни. Гипотезы происхождения жизни на Земле
  • § 32. Основные этапы эволюции растительного и животного мира
  • § 33. Многообразие современного органического мира. Принципы систематики
  • Глава 6. Происхождение и эволюция человека

  • § 35. Формирование представлений о происхождении человека. Место человека в зоологической системе
  • § 36. Этапы и направления эволюции человека. Предшественники человека. Древнейшие люди
  • § 38. Биологические и социальные факторы эволюции человека. Качественные отличия человека